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ABSTRACT
One-bit quantization at the base-station (BS) of a massive
multiple-input multiple-output (MIMO) wireless system en-
ables significant power and cost savings. While the 1-bit uplink
(users communicate to BS) has gained significant attention,
the downlink (BS transmits to users) is far less studied. In
this paper, we propose a novel, computationally-efficient 1-bit
beamforming algorithm referred to as POKEMON (short for
PrOjected downlinK bEaMfOrmiNg), which—after its convo-
lution with the MIMO channel matrix—minimizes multi-user
interference (a.k.a. spatial leakage). Our algorithm builds upon
the biconvex relaxation (BCR) framework, which efficiently
approximates the optimal 1-bit beamforming problem that is of
combinatorial nature. Our simulation results show that POKE-
MON significantly outperforms linear beamformers followed
by 1-bit quantization in terms of error-rate performance and
recent non-linear beamformers in terms of complexity.

Index Terms— Massive MIMO, beamforming, precoding,
quantization, biconvex relaxation, alternating optimization.

1. INTRODUCTION

The base-station (BS) of traditional cellular multiple-input
multiple-output (MIMO) wireless systems is typically equipped
with high-precision (e.g., 10 bits or more) digital-to-analog
converters (DACs). Scaling such a conventional downlink
architecture to massive MIMO systems [1, 2] with hundreds
to thousands of active antenna elements would result in pro-
hibitively high power consumption and system costs [3, 4, 5].
Instead, the use of low-precision DACs would allow for a
significant power reduction and would also enable one to relax
the quality requirements on the remaining radio-frequency
(RF) circuitry (such as power amplifiers), which further lowers
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the power consumption and system costs—this is because
the impairment strength in the remaining RF circuitry needs
to be “just below” the quantization noise floor [6]. Coarsely
quantized massive MIMO systems also reduce the raw base-
band data-rates that must be transferred from the baseband
processing unit to the DACs which may be separated [3].

In order to reduce the power consumption and data rates
at the BS of massive MIMO systems, coarse quantization of
baseband signals has recently gained significant attention in
the massive MIMO uplink (users communicate to the BS); see,
e.g., [3, 5, 6] and the references therein. In contrast, the quan-
tized massive MIMO downlink (BS communicates with users)
is far less explored. Notable exceptions are the papers [7, 8, 9],
which propose to quantize the output of linear beamformers
(or precoders) to 1-bit. The proposed methods, however, suffer
from a significant error-rate performance loss compared to BS
architectures that use high-precision DACs in realistic systems
with only hundreds of BS antenna elements. More recently, the
papers [10, 11] proposed non-linear beamforming algorithms
for 1-bit DACs that significantly outperform linear-quantized
beamformers in error-rate performance. These methods, how-
ever, require significantly higher computational complexity.

1.1. Contributions

In this paper, we propose a novel non-linear 1-bit beamform-
ing algorithm that significantly outperforms linear-quantized
algorithms in terms of error-rate performance and requires
lower computational complexity than the non-linear methods
in [10, 11]. Our algorithm, dubbed POKEMON (short for
PrOjected downlinK bEaMfOrmiNg), relies on biconvex re-
laxation (BCR), a framework recently proposed in [12] for ap-
proximately solving large semidefinite programs in computer-
vision applications. We transform the optimal 1-bit beam-
forming problem (that is of combinatorial nature) into BCR
form, which we then approximately solve using an alternat-
ing optimization procedure. We use system simulations to
show that BCR approaches the error-rate performance of opti-
mal beamforming methods that use infinite precision DACs.
We furthermore compare our method to linear-quantized zero-
forcing (ZF) beamforming [7, 8, 9] and the squared-infinity
norm Douglas-Rachford splitting (SQUID) algorithm in [10].

https://github.com/VIP-Group/POKEMON


Fig. 1. System model of 1-bit beamforming in massive MIMO systems with B base-station (BS) antennas serving U � B
users. The BS (left) is equipped with one 1-bit digital-to-analog converter (DAC) per in-phase and quadrature component. 1-bit
beamforming minimizes the power consumption at the BS and mitigates multi-user interference (MUI) at the user side (right).

1.2. Notation

Lowercase boldface letters stand for column vectors; upper-
case boldface letters denote matrices. For a matrix A, we
denote its transpose by AT . The kth entry of a vector a is
denoted by ak. The `2-norm of a is ‖a‖2 =

√∑
k |ak|2. The

identity matrix is I. The real and imaginary part of a complex
vector a is denoted by <(a) and =(a), respectively.

1.3. Paper Outline

The rest of the paper is organized as follows. Section 2 in-
troduces the system model and formulates the optimal 1-bit
quantized beamforming problem. Section 3 proposes our
beamforming algorithm that uses BCR. Section 4 provides
numerical simulation results. We conclude in Section 5.

2. DOWNLINK SYSTEM MODEL
AND QUANTIZED BEAMFORMING

2.1. Downlink System Model

We consider a massive MIMO downlink system as illustrated
in Fig. 1. The BS consists of B antennas and serves U � B
single-antenna users in the same time-frequency resource. The
narrowband, flat-fading input-output relation of the downlink
channel is given by

y = Hx+ n. (1)

Here, the vector y ∈ CU contains the received signals at all U
users. The matrix H ∈ CU×B models the downlink channel,
which is assumed to be known. The beamformed vector is
denoted by x ∈ XB , where X is the transmit alphabet; this
set is C in the case of infinite-precision transmission, and
quaternary in the case of 1-bit DACs. Specifically, we denote
the set of possible binary and real-valued quantizer outcomes
as L = {−`,+`} for some ` ∈ R with ` > 0. For each
BS antenna b = 1, . . . , B, we transmit xb = `R + j`I with
`R, `I ∈ L for b = 1, . . . , B. The vector n ∈ CU in (1)
models additive receive-side noise and is assumed to be i.i.d.
circularly symmetric complex Gaussian with variance N0.

2.2. Quantized Beamforming

The goal of beamforming in the downlink is to transmit constel-
lation points su ∈ O for u = 1, . . . , U to each user u, where
O is the transmit constellation (e.g., QPSK or 16-QAM), while
minimizing multi-user interference (MUI) [1, 2]. Hence, the
BS uses channel state information (CSI) to beamform the sym-
bol vector s ∈ OU into a B-dimensional beamformed vector
x = P(s). Here, P represents the (possibly nonlinear) beam-
former, x satisfies an average power constraint E

[
‖x‖22

]
≤ P,

and % = P/N0 is the normalized transmit power.
After transmission of the beamformed vector x over the

downlink channel in (1), we consider the following effective
input-output relation [10]:

y = β−1s+ e+ n, (2)

where the beamforming vector x satisfies Hx = β−1s + e.
We call the quantities β ∈ R+ the beamforming factor and e ∈
CU the residual error vector, which models MUI and other
residual distortion caused by the (quantized) beamformer.

As in [11], we assume that the users are able to estimate the
beamforming factor β and hence, are able to form an estimate

ŝu = βyu = su + β(eu + nu).

We assume the users perform minimum distance decoding
from their estimates ŝu. Therefore, our beamformer minimizes
the mean-squared error (MSE) at the user side

MSE = En

[
‖ŝ− s‖22

]
= ‖s− βHx‖22 + β2UN0.

By replacing the average power constraint with an instanta-
neous constraint, we obtain the following quantized beamform-
ing (QB) problem [10]:

(QB)

{
minimize

x∈XB , β∈R+
‖s− βHx‖22 + β2UN0

subject to ‖x‖22 ≤ P,

which is a combinatorial problem in the quaternary-valued
vector x. For example, for a system with 128 BS antennas



and 1-bit quantization, an exhaustive search requires one to
evaluate the objective function more than 1077 times, assuming
that the optimal beamforming factor β̂ is known. Hence, such
naı̈ve methods are infeasible in massive MIMO systems.

3. 1-BIT BEAMFORMING ALGORITHM

3.1. Approximating the QB Problem

To solve the QB problem efficiently for 1-bit DACs, we use
the BCR framework put forward in [12], which was initially
proposed for solving large semidefinite programs appearing
in computer-vision problems. To use this framework, we
first simplify the objective function in (QB) by assuming that
N0 → 0, i.e., we assume our system to operate in the high
signal-to-noise-ratio (SNR) regime. We furthermore take a
leap of faith with the following approximation:

min
β∈R+

‖s− βHx‖22 ≈ min
α∈R+

‖αs−Hx‖22 (3)

for a given beamforming vector x; i.e., we switch sides of the
beamforming factor so that β−1 ≈ α. We also apply the real-
valued decomposition by defining the following quantities:

s =

[
<{s}
={s}

]
,H =

[
<{H} −={H}
={H} <{H}

]
, and x =

[
<{x}
={x}

]
.

With these approximations and definitions, we can simplify
the QB problem into the following optimization problem:

(QB∗)

 minimize
x∈L2B , α∈R+

∥∥αs−Hx
∥∥2
2

subject to |xb| =
√
P√
2B
, b=1, . . . , 2B,

whose binary-valued solution vector x̂ satisfies the instan-
taneous power constraint ‖x̂‖22 = P . The solution to this
problem can then be converted to a complex-valued vector and
transmitted over the channel as modeled in (1).

3.2. Biconvex Relaxation (BCR)

We next reformulate the above optimization problem (QB∗)
using BCR [12]. Before we can do so, we start by optimizing
the problem in the variable α ∈ R while holding the vector x
fixed. The resulting optimal scaling parameter α̂ is given by

α̂ = arg min
α∈R

∥∥αs−Hx
∥∥2
2
=

sTHx

‖s‖22
,

where we also allow a negative scaling factor—the sign can
be absorbed into x thanks to the symmetry of the binary quan-
tization alphabet L. Inserting α̂ into (QB∗) yields

x̂ = arg min
|xb|=

√
P√
2B
, b=1,...,2B

‖Ax‖22,

with the following auxiliary matrix:

A =

(
I− s sT

‖s‖22

)
H,

which is a projected version of the real-valued channel matrix
H on the orthogonal complement of the real-valued vector s.

We are now ready to deploy the BCR framework. First,
we introduce a copy of the vector x = q, which allows us to
rewrite the above optimization problem as

x̂ = arg min
|xb|=

√
P√
2B
, b=1,...,2B

‖Aq‖22 + γ‖q− x‖22,

where γ > 0 is a (fixed) regularization parameter. We next
relax the non-convex alphabet constraint |xb| =

√
P√
2B

to a

convex constraint |xb| ≤
√
P√
2B

, b = 1, . . . , 2B, which yields
the following approximate solution:

x̃ = arg min
|xb|≤

√
P√
2B
,b=1,...,2B

‖Aq‖22 + γ‖q− x‖22.

This problem can be reformulated in a (slightly) more compact
form as follows:

x̃ = arg min
‖x‖∞≤

√
P√
2B

‖Aq‖22 + γ‖q− x‖22.

The final step (and the key idea) of BCR is to force the relaxed
constraints to be satisfied with equality. This can be accom-
plished by adding a non-convex term (a negative squared Eu-
clidean norm) in the objective that promotes large values in x;
this final step leads to the BCR problem

x̂BCR = arg min
‖x‖∞≤

√
P√
2B

‖Aq‖22 + γ‖q− x‖22 − δ‖x‖22, (4)

where the two algorithm parameters must satisfy 0 < δ < γ.
Note that these two parameters can be tuned to improve the
performance of our algorithm; see [12] for more details.

3.3. Alternating Optimization

As in [12], we solve the BCR problem in (4) using alternating
minimization. First, we solve for the vector q while holding
the vector x fixed. Then, we solve for the vector x while hold-
ing q fixed. This results in the following iterative procedure:

q(t+1) = arg min
q∈R2B

‖Aq‖22 + γ‖q− x(t)‖22

x(t+1) = arg min
‖x‖∞≤

√
P√
2B

γ‖q(t+1) − x‖22 − δ‖x‖22,

which we initialize with the matched filter x(1) = H
T
s at

iteration t = 1. Note that both steps are convex optimization
problems (the optimization problem is biconvex) that can be



solved in closed form. In particular, the algorithm reduces to
the following simple two-step procedure:

q(t+1) = (I+ γ−1ATA)−1x(t) (5)

x(t+1) = proj(q(t+1)),

where the (non-orthogonal) projection operator, designated by
proj(·), is given by

xb=proj(q
(t+1)
b )=sgn(q

(t+1)
b )min

{
γ

γ − δ |q
(t+1)
b |,

√
P√
2B

}

and operates element-wise on the vectors.1 After the final iter-
ation tmax, the real-valued vector x(tmax) is quantized to ±

√
P√
2B

and converted back into a complex vector that is transmitted
over the downlink channel as modeled in (1). For the lack
of a better name, we call this 1-bit beamforming algorithm
POKEMON (short for PrOjected downlinK bEaMfOrmiNg).

4. SIMULATION RESULTS

Fig. 2 shows bit error-rate (BER) simulation results with i.i.d.
Rayleigh fading channel matrices for two different antenna
configurations and modulation schemes. For each normalized
transmit power value %, we perform 10,000 Monte-Carlo tri-
als. The POKEMON algorithm parameters are γ = 1 and
δ = 0.2, and we perform a maximum of tmax = 20 iterations.
We compare our 1-bit beamforming algorithm to that of infi-
nite precision ZF, which is given by xZF = ρHH(HHH)−1s,
where the parameter ρ is chosen to satisfy the average power
constraint E

[
‖xZF‖22

]
= P . We also consider ZF beamform-

ing followed by quantization

xQ-ZF =

√
P√
2B

(
sgn(<{xZF}) + j sgn(={xZF})

)
,

as well as the recently-proposed SQUID algorithm, a 1-bit and
non-linear beamformer that uses convex relaxation (see [10]
for the details); we use 200 SQUID iterations.

We clearly see that the proposed method significantly out-
performs linear-quantized methods in the 1-bit DAC case. In
addition, POKEMON is able to approach ZF beamforming for
infinite precision DACs by a few dB SNR (3 dB for B = 128
using QPSK and 5 dB for B = 256 using 16-QAM at 10−3

BER), which demonstrates that massive MIMO enables the use
of 1-bit DACs also in the downlink. When compared with a
highly-optimized SQUID algorithm implementation from [10],
our algorithm achieves similar error-rate performance but at
substantially reduced simulation time; an unoptimized MAT-
LAB implementation is 4.5× and 2.7× faster for the system
configuration in Fig. 2(a) and Fig. 2(b), respectively. Further-
more, the algorithmic regularity and simplicity of POKEMON
would enable more efficient hardware implementations.

1In cases where the matrix A is extremely large, the matrix inversion in (5)
can be avoided using forward-backward splitting methods [13].
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(a) U = 16, B = 128, and QPSK.
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(b) U = 16, B = 256, and 16-QAM.

Fig. 2. Bit error-rate simulations of uncoded massive MIMO using
two antenna configurations and modulation schemes. POKEMON sig-
nificantly outperforms ZF followed by 1-bit quantization, approaches
the performance of infinite-precision ZF beamforming, and performs
close to SQUID at substantially reduced simulation time.

5. CONCLUSION

We have shown that non-linear beamforming algorithms can
significantly outperform linear methods followed by quanti-
zation in 1-bit massive MIMO systems. Our algorithm relies
upon biconvex relaxation (BCR) [12], which enables us to
approach the error-rate performance of infinite-precision ZF
beamforming and the recently-proposed non-linear 1-bit beam-
former, SQUID [10], at lower computational complexity. Our
results demonstrate that 1-bit massive MIMO systems enable
reliable communication even with higher order modulation
schemes, such as 16-QAM, when combined with sophisti-
cated, non-linear beamforming algorithms. The regularity of
POKEMON also paves the way for a very-large-scale integra-
tion (VLSI) design that would enable 1-bit beamforming in
practical massive MIMO systems.
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