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Abstract—We propose a novel, near-optimal data detection algorithm
and a corresponding FPGA design for large multiple-input multiple-
output (MIMO) wireless systems. Our algorithm, referred to as TASER
(short for triangular-approximated semidefinite relaxation), relaxes the
maximum-likelihood (ML) detection problem to a semidefinite program
and solves a non-convex approximation using a preconditioned forward-
backward splitting procedure. We show that TASER achieves near-ML
performance at low computational complexity, even for large-dimensional
MIMO systems. We develop a systolic array that implements TASER and
achieves high throughput at low hardware complexity. To demonstrate
the effectiveness of our solution, we develop reference designs on a Xilinx
Virtex-7 FPGA for various antenna configurations. One of our TASER
designs achieves up to 98 Mb/s for a 32-user system employing QPSK,
while consuming only 150 k FPGA look-up tables.

I. INTRODUCTION

Large multiple-input multiple-output (MIMO) is believed to be
a key technology for 5G wireless communication systems [1], [2].
The idea is to equip the base station (BS) with hundreds (or more)
of antennas, while serving a typically smaller number of (single- or
multi-antenna) users at the same time in the same frequency band.
While large-MIMO promises improved spectral efficiency compared
to more traditional, small-scale MIMO systems, the potentially large
number of user antennas requires computationally expensive data-
detection algorithms. To enable high-throughput uplink communication
(where users transmit data to the BS), a variety of low-complexity
data-detection algorithms [3]–[5], as well as corresponding FPGA
implementations [6]–[8] and application-specific integrated circuit
(ASIC) designs [9] have been recently proposed. All existing data
detectors for large-MIMO, however, rely on linear data detection
(and approximations thereof). Such algorithms enable high-throughput
VLSI designs, but entail a significant performance loss in “not-so-
large” MIMO systems, where the ratio between the number of BS
antennas and user antennas is rather small (e.g., two or lower).

A. Contributions

In this paper, we develop a novel data detection algorithm and a cor-
responding FPGA design for large-MIMO systems, which we refer to
as TASER (short for triangular-approximated semidefinite relaxation).
Our detector builds upon semidefinite relaxation (SDR) [10], [11],
which enables near-ML data detection performance, even for systems
where the number of BS antennas is equal to the number of users [12].
TASER approximates the SDR formulation of the ML problem
using a Cholesky factorization, and solves the resulting non-convex
problem using forward-backward splitting (FBS) [13]. We develop
a corresponding systolic array, which enables high throughput at
manageable implementation costs. We provide implementation results
for a Xilinx Virtex-7 FPGA and perform a comparison with the
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recently-proposed large-MIMO data detectors [6]–[8] in terms of error-
rate performance, throughput, and FPGA-implementation complexity.

B. Notation
Lowercase boldface letters stand for column vectors; uppercase

boldface letters denote matrices. For a matrix A, we denote its
transpose by AT . We use Ak,` for the entry in the kth row and
`th column of the matrix A; the kth entry of a vector a is denoted
by ak = [a]k. The `2-norm of a is ‖a‖2 =

√∑
k |ak|2. The identity

matrix is I and the all-ones vector is 1. The real and imaginary part
of a complex vector a is denoted by <(a) and =(a), respectively.

II. SYSTEM MODEL AND SEMIDEFINITE RELAXATION

We consider a large MIMO wireless uplink system with B BS
antennas and U ≤ B user antennas. We use the standard input-output
relation to model the (flat-fading) wireless channel: y = Hs + n.
Here, y ∈ CB is the BS receive-vector, H ∈ CB×U is the MIMO
channel matrix, s ∈ OU is the transmit vector containing the data
symbols from all users (O refers to the constellation set), and n ∈ CB

is i.i.d. circularly-symmetric Gaussian with variance N0 per entry.
For this model, maximum-likelihood (ML) detection corresponds to

ŝML = arg min
s∈OU

‖y −Hs‖2, (1)

and its runtime complexity scales exponentially with the number
of users U , even with computationally efficient sphere-decoding
algorithms [14]. Semidefinite relaxation (SDR) of (1) is a well-
known ML approximation [10] that enables significantly lower (i.e.,
polynomial) complexity for large-MIMO systems employing BPSK
and QPSK constellations1, while achieving full ML-diversity [12].

SDR starts with the real-valued decomposition of the MIMO system,
i.e., ȳ = [<(y);=(y)] and H = [<(H),−=(H);=(H),<(H)], and
solves the following semidefinite program (SDP) [11]:

X̂ = arg min
X

trace(TX) subject to diag(X) = 1, X � 0. (2)

Here, T = [H
T
H,−HT

y;−yTH,yTy] is of dimension N × N
with N = 2U + 1 for QPSK, and the constraint X � 0 ensures
that X is a positive semidefinite (PSD) matrix. An estimate of the ML
solution in (1) is obtained by taking the signs of the leading eigenvector
of X (see [11] for the details). While (2) can be solved exactly using
interior-point methods [11], these algorithms require a large number of
iterations, where each iteration involves the computation of eigenvalue
decompositions (or matrix inverses) and transcendental functions. We
believe that these are the main reasons that—until now—no VLSI
design of an SDR detector has been described in the open literature.

III. TASER: TRIANGULAR-APPROXIMATED
SEMIDEFINITE RELAXATION

We now detail our algorithm, referred to as TASER, which computes
an approximate solution to the SDP in (2) at low complexity.

1SDR methods for other constellations exist; see, e.g., [15] for more details.



Algorithm 1 TASER

1: inputs: T̃, D, and τ = 1/‖T̃‖2
2: initialization: L̃(0) = D
3: for t = 1, . . . , tmax do
4: V(t) = L̃(t−1) − tril(2τ L̃(t−1)T̃)
5: L̃(t) = proxg̃(V(t))
6: end for
7: outputs: sk = sign(L̃

(tmax)
N,k ), k = 1, . . . , N − 1

A. Triangular SDP Formulation via the Cholesky Decomposition
The key idea of TASER builds upon the fact that PSD matrices can

be factorized using the Cholesky decomposition X = LTL, where L
is an N ×N lower-triangular matrix. This allows us to reformulate
the SDR problem in (2) as

L̂ = arg min
L

trace(LTLT ) subject to ‖`k‖2 = 1,∀k, (3)

where we replaced the constraint diag(LTL) = 1 of (2) by an
equivalent `2-norm equality constraint on the kth column `k = [L]k.
For BPSK and QPSK, we take the signs of the last row of the solution
matrix L̂ from (3); see our planned journal paper [16] for the details.

B. Forward-Backward Splitting (FBS)
Since the problem (3) is non-convex, finding an optimal solution is

difficult. For TASER, we apply FBS [13] (a computationally efficient
method to solve convex optimization problems) to the non-convex
problem in (3). While this approach is not guaranteed to converge to
the optimal solution of the non-convex problem (3), our simulation
results in Section V show excellent error-rate performance.

FBS is an efficient, iterative method to solve convex optimization
problems of the form x̂ = arg minx f(x) + g(x), where the
function f is smooth and convex, and g is convex but non-smooth,
using the following iterative process (for t = 1, 2, . . . , tmax) [13]:

x(t) = proxg(x(t−1) − τ∇f(x(t−1)); τ).

Here, τ > 0 is a suitably-chosen step size, ∇f(x) is the gradient
of f , and the proximal operator for the function g is [13]

proxg(z; τ) = arg min
x

{
τg(x) + 1

2
‖x− z‖22

}
. (4)

C. The TASER Algorithm
To solve (3) using FBS, we set f(L) = trace(LTLT ) and g(L) =

χ(‖`k‖2 = 1,∀k), where χ is the characteristic function (which
is zero if the constraint is met and infinity otherwise). For these
definitions, the gradient is given by ∇f(L) = tril(2LT), where
tril(·) extracts the lower-triangular part; the proximal operator (4)
is given by proxg(`k; τ) = `k/‖`k‖2, ∀k. We use a step size of
τ = 1/‖T‖2, where ‖T‖2 is the spectral norm of the matrix T.

To ensure fast convergence of FBS, we precondition (3). To this
end, we compute a diagonal matrix D = diag(

√
T1,1, . . . ,

√
TM,M )

which allows us to precondition the matrix T̃ = D−1TD−1 so that
it has an all-ones diagonal. We then run FBS on a normalized lower-
triangular matrix L̃ = DL until a maximum number of iterations
tmax has been reached. Preconditioning also requires a modified
proximal operator: proxg̃(˜̀k) = Dk,k

˜̀
k/‖˜̀k‖2. We next propose

a systolic array that enables us to implement TASER as summarized
in Algorithm 1; more details can be found in [16].

IV. SYSTOLIC VLSI ARCHITECTURE

A. Architecture Overview
Figure 1 shows the proposed triangular systolic array consisting

of 1
2
N(N + 1) processing elements (PEs). Each PE contains an

entry L̃(t−1)
i,j of the lower-triangular matrix L̃(t−1). All PEs in the same

Fig. 1. High-level block diagram of TASER. We use a systolic array of
processing elements (PEs) for the diagonal (D) and off-diagonal (OD) elements,
which enables high throughput at moderate hardware complexity.

Fig. 2. Architecture details of the column-broadcast unit (CBU), the column-
scale unit, and the off-diagonal (OD) and diagonal (D) PEs.

column and row receive data from a column-broadcast unit (CBU) and
a row-broadcast unit (RBU), respectively. Both of these broadcast units
enable the computation of the N ×N matrix-matrix multiplication
on line 4 of Algorithm 1 in N clock cycles. In the kth cycle during
the tth TASER iteration, the RBU of the ith row sends the value
L̃

(t−1)
i,k to all PEs on row i, while the jth CBU sends T̂k,j to all PEs

on column j. We assume that the (scaled) matrix T̂ = 2τT̃ has been
computed in a pre-processing step and is stored in distributed FPGA
look-up tables (LUTs), instead of block RAMs. With the data from
the RBU and CBU, each PE then performs a multiply-accumulate
(MAC) operation until the matrix-matrix multiplication is complete.
The subtraction operation on line 4 is carried out by initializing the
accumulator with L̃(t−1)

i,j and by sequentially subtracting L̃(t−1)
i,k T̂k,j .

Since L̃ is lower-triangular, the V (t)
i,j value from line 4 can be

computed for all PEs in the ith row in only i clock cycles. To
implement the proxg̃ function, during the (i + 1)th cycle each PE
on the ith row squares V (t)

i,j and passes it downwards to the next PE
in the same column (the green arrows in Figure 1). In the (i+ 2)th
cycle, the PEs of the (i+ 1)th row square their V (t)

i+1,j and add the
result to the value from the previous row. This enables the calculation
of the squared `2-norm in N + 1 cycles. For the jth column, the
squared `2-norm is passed to a scale unit, which computes the inverse
square root and multiplies it with Dj,j . The result is then sent to all
the PEs in the same column via the CBU. All PEs then multiply this
scaling factor to their V (t)

i,j value to obtain the next iterate L(t)
i,k, thus
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Fig. 3. Uncoded vector error rate (VER) for a 16 BS antenna, 16 user antenna
large MIMO system. TASER achieves near-optimal VER performance (close-
to-ML and the SIMO lower bound) and achieves similar performance as the
exact SDR detector; linear MMSE data detection performs only poorly.

completing the proximal operation on line 5.

B. Processing Element

We designed two slightly distinct types of PEs in our systolic array:
(i) off-diagonal (OD) PEs and (ii) diagonal (D) PEs (cf. Figure 2).
Both PE types support the following four operation modes:

1) Initialization of L: This mode is used for line 2 of Algorithm 1.
All off-diagonal PEs initialize L̃(t−1)

i,j = 0; the diagonal PEs initialize
their states with Dj,j received from the CBU.

2) Matrix multiplication: This mode is used to compute line 4
of Algorithm 1. The multiplier uses the inputs from both broadcast
signals. In the first cycle of the matrix-matrix multiplication procedure,
the multiplier’s output is subtracted from L̃

(t−1)
i,j ; in all other cycles,

it is subtracted from the accumulator. In the kth cycle, all the PEs
in the kth column use their internal L̃(t−1)

i,k to feed the multiplier,
instead of the signals coming from the RBU.

3) Squared `2-norm calculation: This mode is used for line 5 of
Algorithm 1. Both of the multiplier’s inputs are V (t)

i,j . For the D-PEs,
the result is passed to the next PE in the same column. For the
OD-PEs, the output of the multiplier is added to the value from the
preceding PE in the same column; the result is sent to the next PE.

4) Scaling: This mode is used to complete line 5 of Algorithm 1.
One of the multiplier’s inputs is V (t)

i,j and the other is Dj,j/‖vj‖2
(which was computed previously by the scale unit, being vj the
jth column of V(t)) received through the CBU. The result of this
operation is L̃(t)

i,j and is stored in every PE.

C. Implementation Details

We use 14 bit fixed-point values in the entire design. All PEs except
for the bottom row use 10 fraction bits to represent L(t−1)

i,j and V (t)
i,j ;

the PEs in the bottom row use 9 fraction bits. For the element L̃N,N ,
we use a register as its value remains constant. There is no RBU for
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Fig. 4. Throughput vs. performance trade-off for a 16 user system. Vertical
dash-dot lines represent the SIMO lower bound; dashed lines represent linear
MMSE performance. TASER outperforms linear detectors in almost all regimes.
The number next to the points corresponds to the number of iterations.

TABLE I
IMPLEMENTATION RESULTS ON A XILINX VIRTEX-7

XC7VX690T FPGA FOR DIFFERENT TASER ARRAY SIZES

Array size N = 9 N = 17 N = 33 N = 65
BPSK users U = 8 U = 16 U = 32 U = 64
QPSK users U = 4 U = 8 U = 16 U = 32

Slices 1 467 4 350 13 787 60 737
LUTs 4 790 13 779 43 331 149 942
FFs 2 108 6 857 24 429 91 829
DSP48s 52 168 592 2 208
Max. clock frequency 232 MHz 225 MHz 208 MHz 111 MHz
Min. latency (cycles) 16 24 40 72
Max. throughput 116 Mb/s 150 Mb/s 166 Mb/s 98 Mb/s

the first row. We implemented the inverse square-root in the scale
unit using LUTs, which consist of 211 entries with 14 bits per word.

The RBUs and CBUs were implemented using multiplexers. The
ith RBU requires a multiplexer with i inputs, whose output connects
to i PEs. This results in larger fan-out for large values of i, eventually
becoming the critical path of the systolic array; the same applies to
the CBUs. To improve the overall throughput, we put registers at the
inputs and outputs of the broadcast multiplexers.

V. IMPLEMENTATION RESULTS AND COMPARISON

A. Error-Rate Performance

Figures 3(a) and 3(b) show vector error rate (VER) simulation
results for TASER (for tmax = 20 iterations) with BPSK and QPSK
modulation, respectively. All simulations are for a 16 × 16 large-
MIMO system (we use the notation B × U ) with i.i.d. flat Rayleigh
fading. We also show the performance of the single-input multiple-
output (SIMO) lower bound, ML detection (for BPSK only), exact
SDR detection (2), and linear MMSE detection. We see that TASER
achieves near-ML performance and outperforms MMSE detection



TABLE II
COMPARISON OF LARGE-MIMO DETECTORS FOR 128× 8 LARGE-MIMO SYSTEMS ON A XILINX VIRTEX-7 XC7VX690T FPGA

Detection algorithm TASER TASER CGLS [7] Neumann [6] CD [8]
Error-rate performance Near-ML Near-ML Near-MMSE Near-MMSE Near-MMSE
Modulation scheme BPSK QPSK 64-QAM 64-QAM 64-QAM
Preprocessing No No Yes Yes Yes
Iterations 3 3 3 3 3

Slices 1 467 (1.35 %) 4 350 (4.02 %) 1 094 (1 %) 48 244 (44.6 %) 13 447 (12.4 %)
LUTs 4 790 (1.11 %) 13 779 (3.18 %) 3 324 (0.76 %) 148 797 (34.3 %) 23 955 (5.53 %)
FFs 2 108 (0.24 %) 6 857 (0.79 %) 3 878 (0.44 %) 161 934 (18.7 %) 61 335 (7.08 %)
DSP48s 52 (1.44 %) 168 (4.67 %) 33 (0.9 %) 1 016 (28.3 %) 771 (21.4 %)
Clock frequency 232 MHz 225 MHz 412 MHz 317 MHz 262 MHz
Latency (clock cycles) 48 72 951 196 795
Throughput 38 Mb/s 50 Mb/s 20 Mb/s 621 Mb/s 379 Mb/s

Throughput/LUTs 7 933 3 629 6 017 4 173 15 821

(note that ML detection and exact SDR detection entail excessive
complexity). We also show the fixed-point performance of our TASER
design, which demonstrates virtually no implementation loss.

Figures 4(a) and 4(b) show the trade-off between the throughput
of TASER and the minimum SNR required to achieve 1% VER. We
also include the SIMO lower bound and the performance of linear
MMSE detection as a reference; this detector serves as a fundamental
performance limit of the conjugate gradient least-squares (CGLS)
detector in [7], the Neumann-series detector in [6], and the recent
coordinate-descent (CD) detector in [8]. The maximum number of
TASER iterations tmax enables us to tune the performance/complexity
trade-off; only a few iterations are sufficient to outperform linear
detection. We furthermore see that TASER delivers near-ML perfor-
mance, while achieving throughputs ranging from 5 Mb/s to 50 Mb/s,
depending on the antenna configuration and modulation scheme.

B. Implementation Results
To demonstrate the effectiveness of TASER, we developed several

FPGA designs for systolic array sizes of N = 9, N = 17, N = 33
and N = 65, which either support 8, 16, 32, and 64 BPSK users, or 4,
8, 16, 32 QPSK users, respectively. The corresponding implementation
results on a Xilinx Virtex-7 XC7VX690T are shown in Table I. As
expected, the resource utilization increases quadratically with the array
size N . For the N = 9 and N = 17 arrays, the critical path is in
the PEs’ MAC unit; for the N = 33 and N = 65 arrays, the critical
path is in the row broadcast multiplexers, which limits the throughput
of the N = 65 array that supports up to 64 BPSK users.

In Table II, we compare TASER to the CGLS detector [7], the
Neumann-series detector [6], and the CD detector [8], which have
been implemented on the same FPGA and for a 128× 8 large-MIMO
system. TASER achieves comparable throughput to the CGLS design
and significantly lower latency than the Neumann-series and CD
detectors. In terms of the hardware efficiency (measured in terms of
throughput per FPGA LUTs), our design performs similarly to CGLS
and Neumann, and inferior to the CD design. Nevertheless, when
taking into account the error-rate performance (see Figures 3(a) and
3(b)), TASER significantly outperforms the error-rate performance of
these reference designs for BPSK and QPSK constellations.

VI. CONCLUSIONS

In this paper, we have implemented—to the best of our knowledge—
the first MIMO data detector that uses semidefinite relaxation. We
have proposed TASER, a novel data-detection algorithm, and a
corresponding systolic array. Our reference FPGA implementation
results show that TASER achieves comparable hardware-efficiency
compared to existing large-MIMO data detectors, while providing near-
ML performance. For systems supporting a large number of low-rate
users (e.g., 16 user or more) where BPSK and QPSK transmission

is sufficient, TASER provides a viable alternative to sub-optimal,
linear data-detection methods. We conclude by noting that due to
stringent space constraints, we have ignored soft-output detection
and a convergence analysis of TASER; both of these issues will be
addressed in a planned journal version of this paper [16].
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