Decentralized Data Detection for Massive
MU-MIMO on a Xeon Phi Cluster

Kaipeng Li', Yujun Chen!, Rishi Sharan?, Tom Goldstein3, Joseph R. Cavallaro!, and Christoph Studer?

!Department of Electrical and Computer Engineering, Rice University, Houston, TX
2School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
3Department of Computer Science, University of Maryland, College Park, MD

Abstract—Conventional centralized data detection algorithms
for massive multi-user multiple-input multiple-output (MU-
MIMO) systems, such as minimum mean square error (MMSE)
equalization, result in excessively high raw baseband data rates
and computing complexity at the centralized processing unit.
Hence, practical base-station (BS) designs for massive MU-
MIMO that rely on state-of-the-art hardware processors and
I/0 interconnect standards must find new means to avoid these
bottlenecks. In this paper, we propose a novel decentralized data
detection method, which partitions the BS antenna array into
separate clusters. Each cluster is associated with independent
computing hardware to perform decentralized data detection,
which requires only local channel state information and receive
data, and a minimum amount of information exchange between
clusters. To demonstrate the benefits of our approach, we map
our algorithm to a Xeon Phi cluster, which shows that BS designs
with hundreds or thousands of BS antennas can be supported.

I. INTRODUCTION

Massive multi-user multiple-input multiple-output (MU-
MIMO) is a key technology in the upcoming fifth-generation
(5G) wireless standards [1]. By equipping the basestation (BS)
with hundreds or thousands of antenna elements to serve tens of
users simultaneously and in the same frequency band, massive
MU-MIMO is able to achieve higher spectral efficiency and
link reliability compared to traditional, small-scale MIMO
systems [2]. In the massive MU-MIMO uplink, in which user
terminals simultaneously transmit data to the BS, data detection
at the BS is a central task that untangles the received data
streams from multiple simultaneously-transmitting users with
the aid of channel state information (CSI).

A. Challenges of Centralized Data Detection

While massive MU-MIMO promises a variety of advantages
over traditional, small-scale MIMO, the large amount of
BS antenna elements pose several critical challenges for the
system architecture and design of practical BS implementations.
Specifically, most existing data detection algorithms, such as
zero-forcing (ZF) or minimum mean square error (MMSE)
equalization, rely on centralized baseband processing in order
to realize the full benefits of massive MIMO. Such schemes
require aggregation of high-rate raw baseband data streams
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sampled from hundreds or thousands of radio-frequency (RF)
chains at the BS, which must be transmitted and processed at
a centralized processing node. Consider, for example, a 128
BS-antenna massive MU-MIMO system with 10-bit analog-
to-digital (ADC) converters running at 40 MHz bandwidth.
Such a system generates over 200 Gb/s raw baseband data.
The bandwidth limitations of existing high-speed interconnects,
such as the common public radio interface (CPRI) [3], as
well as the input-output (I/O) bandwidth and on-chip storage
limits of conventional baseband accelerators, such as field-
programmable gate arrays (FPGAs) or graphics processing
units (GPUs) [4], however, prevent the use of such naive
centralized solutions. In fact, existing massive MU-MIMO
testbeds, such as the Argos testbed [5], the LuMaMi testbed [6],
and the BigStation [7], have shown that centralized baseband
processing is infeasible with current I/O bandwidths and hard-
ware processing capabilities. Therefore, these testbeds either
perform maximum ratio combining (MRC) [5], which naturally
enables distributed data detection at the antenna elements,
or distribute baseband processing across subcarriers [6], [7].
Unfortunately, MRC prevents the use of high-rate modulation
and coding schemes that achieve throughputs in the Gb/s regime.
Distributing baseband processing across subcarriers requires
high-throughput data transfer from all RF components to all
baseband processors (but only for a subset of subcarriers),
which still causes extremely high I/O bandwidth for systems
with thousands of BS antenna elements. As a consequence,
alternative BS architectures are required that mitigate the I/O
bandwidth and baseband processing bottlenecks.

B. Contributions

In this paper, we propose a novel decentralized data detection
architecture and a suitable algorithm for massive MU-MIMO
systems. We divide the BS antenna array into separate antenna
clusters, each connected to local RF elements and providing
storage for local CSI. Data detection is then carried out in
a decentralized manner with minimum information exchange
between the antenna clusters. Our data detection algorithm
relies on a conjugate gradient (CG) method that performs
inversion-free MMSE equalization in a decentralized manner.
To demonstrate the practical relevance of our solution, we
present reference implementation results on a Xeon Phi cluster,
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Fig. 1. Overview of the proposed decentralized data detection architecture.
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in which each computing node is equipped with a state-of-the-
art many-core Intel Xeon Phi Knights Landing processor.

II. DECENTRALIZED DATA DETECTION
A. Uplink System Model

We consider a massive MU-MIMO uplink system that
uses orthogonal frequency division multiplexing (OFDM). The
system consists of U single-antenna users transmitting data
contained in the vector x,, € CY on each OFDM subcarrier
w=1,2,..., W over the uplink channel that is modeled by
the matrix H,, € C5*Y to a BS that is equipped with B > U
antenna elements. The input-output relation of the uplink
channel is modeled as y,, = H,,x,, + n,, per subcarrier w.
Here, y,, € CP is the received signal at the BS antenna
array and n,, € CP is i.i.d Gaussian noise with variance N
per complex entry. For each subcarrier w, the BS performs
data detection using the received signal y,, and the estimated
channel matrix H,, to demultiplex the transmitted data from
all users. In what follows, we omit the subcarrier index w.

B. Decentralized Data Detection Architecture

In order to arrive at computationally efficient data detection
algorithms that can be decentralized, we focus on linear MMSE
equalization. This approach consists of an equalization and
a detection stage. For the MMSE equalization stage, we are
interested in solving the following optimization problem:

(D

% = argmin [y — Hx[3 + 2 x|,
xeCY

where E, = E[|z;|?] is the average per-user transmit energy
for user 4. The solution to (1) is the well-known linear MMSE
estimate, which is used to compute approximate soft-output
values, e.g., in the form of log-likelihood ratio (LLR) values [8].
To solve (1) in a decentralized manner, we propose a
decentralized detection architecture as shown in Fig. 1. We
evenly partition the BS antenna array into C' antenna clusters,
where each cluster is associated with .S antenna elements so that
B = CS. Each cluster performs decentralized data detection
using only local?> CSI and received data. Each cluster only
observes part of the received vector that pertains to cluster ¢, i.e.,

IFor the sake of simplicity, we assume an equal transmit power at each
user. An extension to the general case is straightforward.

2Each cluster performs independent channel estimation in the uplink. The
locally-acquired CSI will not be distributed to the other antenna clusters.

Algorithm 1 Decentralized CG-based MMSE Data Detection

I: Input: H., c=1,...,C, and y., and p
2: Preprocessing:

3 yMF = HHy.  /* Decentralized */
4y =S yM' /% Centralized */

5: CG iterations:

6: Init: r(® = yMF,p(0> = r(o),s(o) =0

7: fort=1,...,7T do

8 Decentralized (each cluster ¢ performs the same operations):
9: wi) = HFH p D

10:  Centralized (consensus on centralized processing unit):

11: w® =53¢ w” /% Consensus */

12:  Decentralized (each cluster ¢ performs the same operations):
13: et — %p(t%) +w®

14: a=[r"DE/((p!D)Hel)
15: x = x4 qpt=D)

16: r® =D _ el

17: B =l |2 /||et)2

18: p(t) — I‘(t) + ﬂp(t—l)

19: end for

20: Output: % = x(*)

Yeo c=1,2,...,C, where y© = [y],...,yZ]". Analogously,
the uplink channel matrix H is partitioned row-wise into blocks
as HT = [HT,... HL] with H. € C¥*V, ¢ = 1,2,...,C.
The ultimate goal of decentralized data detection is to solve (1)
where each cluster only accesses local CSI and received data
with minimum information exchange among the clusters.

C. Decentralized Equalization using Conjugate Gradient

Since the MMSE equalization problem in (1) is quadratic in
the vector x, we can solve it using the conjugate gradient (CG)
method in a decentralized manner. Reference [9] proposed a
centralized equalization-based detection method using CG to
approximate the equalized signal X iteratively without the need
of an explicit matrix inversion. Our decentralized CG-based
detection builds on this centralized algorithm. The key of the
proposed decentralization approach is to break all centralized
computations that rely on global CSI and receive data (i.e., H
and y) into smaller, independent problems that only require
local CSI and receive data (i.e., H. and y.). The centralized
CG-based detector in [9] involves two stages: a preprocessing
stage for calculating the matched filter output yMF and a CG
iteration stage to estimate % using yMF' as initialization.

For the preprocessing stage, it is important to realize that
one can rewrite the matched filter (MF) yMF = HYy as
yMF = 25021 HHy., which decentralizes the preprocessing
stage. Specifically, each cluster computes H y,; the results
of each cluster are then summed up in a centralized manner
to obtain the MF output yMF.

For the CG iteration stage, we need to update the estimation
of transmit vector x, as well as some intermediate vectors e,
r, and p required by the CG algorithm in the order of e, x,
r, and p in each iteration (see [9] for the details). In contrast
to the update procedure of x, r, and p, which only involves
vector operations that are not dependent on global CSI H, the
update procedure of e requires global CSI for each iteration ¢:

e — (%I + HHH)p(tfl)7 )



10° ‘ 10° 10° ‘
i ——— *R‘S\ i S————N T i B—P——g o< 7
-1 %\ o -1 \\‘ -1 \\:
£ 10 —— mmsEe e £ 10 —— mmsE -_\“ £ 10 [ —— mmsE “!
é MRC s é MRC X é MRC A%
5 —e— DCG:lter1 1\ 5 —e— DCG:lter1 NN 5 —6— DCG:lter1 N
= 102l —&— DCG:lter2 \\\ = 10%l{ —&— DCG:lter2 “ \ z 102} —&— DCG:lter2 .‘
—o— DCG:lter3 \ERY —o— DCG:lter3 % —— DCG:lter3 &
—+— DCG:lter4 ‘\ —+— DCG:lter4 \\ —+— DCG:lter4 “ \\
3 —2— DCG:lter5 \ \ 3 —— DCG:lter5 \l 3 —=— DCG:lter5 \ .\,
10 10 10
15 10 -5 0 5 10 15 15 10 5 0 5 10 15 15 10 5 0 5 10 15
SNR [dB] SNR [dB] SNR [dB]
(@ U=16,S=8,C=8,B=64 b)U=16,S=8,C=16,B =128 (c) U=16,5S =8,C =32, B =256
10° 10° 10°
e = = e 74 e = oo
X w ‘
-1 _1 -1
£ 10 —— mmsEe “! £10 \t —— MMSE g 10 —— MMSE
L MRC X z 1 MRC z MRC
5 —e— DCG:lter1 & 5 \u —— DCG:lter1 5 —e— DCG:lter1
2 402| —=—pcaiter2 |\ .\ = 402 \\ | —=—npcaierz || 2 1072 —=—DCGilter2 ||
@ ——DCGilter3 | | | @ }\ | ——Dcaiters = % —o— DCGlter3
—— DCGlter4 [ A\ A1) —— DCG:lter4 Y —+— DCG:lter4
|l —*—DCG:lter5 'y 3 —=— DCG:lter5 B \ —2— DCG:lter5
10 10 10
15 10 -5 0 5 10 15 15 10 5 0 5 10 15 15 10 5 0 5 10 15
SNR [dB] SNR [dB] SNR [dB]

() U=16,5=232,C =8,B =256

(&) U=16,8 =32,C =16, B = 512

(Hh U=16,8 =32,C =32, B =1024

Fig. 2. Bit error rate (BER) performance comparison between decentralized conjugate gradient (DCG) and centralized MMSE detection for different system

configurations: U denotes the number of users, S the number of antennas per

i.e., requires access to the full channel matrix H and thus,
must be decentralized. It is key to realize that the Gram matrix
can be computed by HFH = Zle HYH,, i.e., by summing
results of local CSI H.. Hence, we can reformulate (2) as

e = Jept=1 + 337  HIH.p(~Y. 3)
Put simply, by locally computing wgt) =HZ H_ p®*—1 at each
antenna cluster, we can obtain the result (3) by performing the
following centralized computations that do not require global
CSI: w) = 25:1 w and e®) = Hopt=1) 4 wlb),

The computations of e, x(*), r(*) and p(*) do not require
access to the (global) channel matrix H and thus, can be
carried out at the centralized processing unit. We must, however,
broadcast the centralized vector p(*) to each antenna cluster
before the decentralized update of wgtﬂ) in the next iteration
can take place. Alternatively, we can directly broadcast the
consensus vector w(t), so that each antenna cluster can
simultaneously compute their own copy of e® x®) r(®) and
p®) in a decentralized manner to ensure the local existence of
p® for updating wgtﬂ). With this alternative approach, we can
completely shift the complexity from the centralized processing
unit to the local processing units, leaving the calculation of
consensus w as the only centralized computation in a CG
iteration; this enables the concatenation of data gathering
and broadcasting, which for example, can be implemented
using a single message-passing function call as discussed in
Section III-B. Therefore, we use this decentralization scheme
and the resulting decentralized CG-based MMSE detection
algorithm is summarized in Algorithm 1. We emphasize that
the centralized computations of yMF at line 4 and consensus w

cluster, C' the number of antenna clusters, and B the number of BS antennas.

at line 11 involve only little information exchange for data
gathering from and broadcasting to every antenna cluster,
since yMF or w are U-dimensional vectors.

D. Simulations and Trade-offs

In this part, we show the error-rate performance of our
decentralized data detection algorithm using system-level
simulations, and evaluate its computational complexity. We
also study the associated performance/complexity trade-off.

We simulate our decentralized CG-based (DCG) data detector
in an LTE-based massive MU-MIMO-OFDM uplink system
with 2048-subcarrier 20 MHz wideband signals, 16-QAM
modulation, a 5/6 rate convolutional encoding, and max-log
soft-output BCJR channel decoding. The channel matrices
are generated using the Winner-II model to reflect real-world
wireless environments. We also consider channel estimation
errors using a standard pilot-based ML estimation scheme.

Fig. 2 shows the bit error rate (BER) performance against
average SNR per receive antenna for our proposed DCG data
detector in the massive MU-MIMO uplink system. We perform
extensive simulations under various parameter configurations
to verify the effectiveness of our proposed scheme. Specifically,
we set the user number U = 16 and individual cluster antenna
number S = 8 or S = 32, and scale the BS antenna number
B = CS from 64 to 1024 by varying the cluster number
C =8, C =16 or C = 32. From our simulation results,
we see that for small numbers of BS antenna elements, such
as B = 64 or B = 128, three CG iterations are sufficient
to approach the BER performance of a centralized MMSE
detector. With more BS antennas, for example, B > 256, our
approach achieves improved BER performance and only two



TABLE I
COMPUTATIONAL COMPLEXITY.

Preprocessing 4CSU +2U
DCG 1st iteration C(8SU +4U) +2U
2—Titers. (T —1)(C(8SU+10U)+2U)
MMSE 6CSU? + LU® +4CSU — LU

iterations are sufficient to approach near MMSE performance.
We also emphasize that the BER performance of our DCG
detector does not depend on the number of antenna clusters C
for a given antenna configuration B and U. For example, in
Fig. 2(c) and Fig. 2(d), we obtain the same BER performance
for either S = 8, C' = 32, or S = 32, C' = 8§ given the total BS
antenna number B = 256. The reason is that equation (3) is
an equivalent decentralized transformation of (2) that does not
involve any approximation. Hence, the BER results in Fig. 2
also apply to fully-decentralized antenna systems, i.e., with
C = B and S = 1, which outperforms the fully-distributed
MRC detector for more than one CG iteration.

In Table I, we show the number of real-valued multiplications
that dominate the computational complexity for both our
DCG detector and a centralized MMSE detector. For the
decentralized detector, we count the total number of real-valued
multiplications from all decentralized parts.

Fig. 3 illustrates the trade-off between error-rate performance
and complexity, where we extract the minimum SNR to
achieve 1% BER from Fig. 2 and calculate corresponding
complexity numbers for each CG iteration of a given antenna
configuration according to the results in Table I. With fewer
than three iterations, which are typically enough for achieving
near-MMSE performance, our DCG scheme also reduces the
computational complexity. We conclude by noting that the
low complexity, high scalability, and low error-rate of our
decentralized method is advantageous in practical massive MU-
MIMO systems compared to centralized solutions.

III. IMPLEMENTATION ON A XEON PHI CLUSTER

We now describe the implementation details of our DCG
algorithm on a Xeon Phi cluster. To achieve high computing
efficiency, we explore the parallelism of DCG for our im-
plementation on the Phi cluster using parallel programming
techniques and realize efficient data communication, such as
data gathering and broadcasting for consensus calculation. We
start by introducing the Intel Xeon Phi processor and then
show our design mapping strategies.

A. Introduction to the Intel Xeon Phi Processor

The Intel Xeon Phi Knights Landing (KNL) processor [10],
the second-generation Phi following previous Knights Corner
(KNC) coprocessor, is a shared-memory computer containing
tens of x86 cores organized with Intel many integrated core
(MIC) architecture on a single chip. Each Phi core supports
simultaneous multithreading with four hardware threads, and
is equipped with a vector processing unit (VPU) and vector
registers to enable 512-bit wide single instruction multiple data
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(SIMD) operations besides scalar processing. Every two cores
with two VPUs and 1 MB L2 cache construct a tile, and all tiles
are interconnected in a 2D mesh on the chip with a total of over
30MB L2 cache. A high-speed MCDRAM is installed around
the 2D mesh on Phi package for fast memory access besides
the use of conventional off-chip DDR4 memory. The KNL Phi
processor can run a self-boot operating system without the need
of a host Xeon CPU, which leads to more efficient workload
deployment within the chip. A Phi cluster can be constructed
by connecting multiple such KNL Phi processor nodes via
Intel high-bandwidth Omni-Path network interconnection, in
which we will realize our proposed decentralized algorithm.

B. Design Mapping on a Xeon Phi Cluster

We start by analyzing the inherent parallelism of our
proposed data detection algorithm. As discussed before, data
detection in OFDM systems can be performed independently
for each subcarrier. Therefore, some previous work [6], [7] has
addressed decentralized processing for downlink beamforming
or uplink detection across subcarriers, i.e., the processing
workloads for different subset of subcarriers are deployed on
different independent processors; this approach, however, still
requires high-throughput data transfer from all antennas to all
processors. Our proposed decentralized architecture introduces
an additional level of parallelism across antenna clusters in
the spatial dimension (beyond subcarriers in the frequency
dimension): data detection for C' antenna clusters can be
performed in parallel, while maintaining the parallelism across
subcarriers within each local antenna group. For local data
detection at each subcarrier, the matrix and vector operations
described in Algorithm 1, such as matrix-vector multiplication,
vector addition/subtraction, multiplication and norm, involve
further data-level parallelism across data elements.

In our implementation, we first generate C' message passing
interface (MPI) processes on the Phi cluster across a total of C'
Phi processors, each process controlling the data detection
associated with an individual antenna group of S antennas on
a single Phi processor. The local data detection workloads for
a batch of Ny, subcarriers can be processed in parallel using
multiple cores and VPUs on each Phi processor. Specifically, we
implement the matrix-matrix or matrix-vector multiplications
with the Intel Math Kernel Library (MKL), which automatically
optimizes the computation efficiency on Intel processors using
multithreading techniques and SIMD instructions for fast math



TABLE 11
LATENCY (L) IN [MS] AND THROUGHPUT (T) IN [MB/S] AT U = 16.

S=8 S =32
C=8B=64 C=16B=128 C=32B=256 C=8B=256 C=16B=512 C=32B=1024
ter. L/T L/T L/T L/T L/T L/T
1 7.801 / 206.7 8.512 / 189.5 9.182 / 175.6 8.925 / 180.7 9.613 / 167.8 10.40 / 155.1
2 11.18 / 144.2 12.29 / 131.2 13.05 / 123.5 12.35 7 130.6 13.38 / 120.5 14.26 / 113.1
3 1452/ 111.1 16.08 / 100.3 17.16 / 93.97 15.65 / 103.0 17.18 / 93.88 18.26 / 88.32

processing. Here, we use the cblas_cgemm_batch MKL
library call, which performs a batch of, for example, Ny
subcarriers, matrix-matrix or matrix-vector multiplications
in a single function execution. By setting a large N,
number, we can keep high occupancy of Xeon Phi computing
resources. For vector addition/subtraction, multiplication and
norm computations, we resort to our customized multithreading
and SIMD implementations for higher design flexibility. In
particular, on each Phi processor, we invoke N, OpenMP
threads to be deployed evenly across computing cores, where
each thread independently handles local vector operations for
Nser/N; subcarriers using VPUs. Here, at each thread, we
perform vector computation by taking advantage of 512-bit
advanced vector extension (AVX) SIMD intrinsics of Phi, which
can process sixteen 32-bit floating-point elements in a single
instruction on VPUs with 512-bit vector registers. While vector
addition/subtraction can be executed element-wise on a pair of
vectors, vector multiplication and norm, especially for complex-
valued vectors, should be broken into multiple SIMD intrinsics
including extra data shuffling and packing intrinsics for efficient
vector operation on interleaved real and imaginary elements.

The collective centralized computations indicated at lines 4
and 11 of Algorithm 1 require data communication across
all of the C' processors. By performing the inter-process
communication using MPI_Allreduce MPI function call,
we can efficiently gather the local results generated at each
Phi computing node for the sum reduction and then broadcast
the calculated consensus back to every Phi node over the
Omni-Path network.

IV. IMPLEMENTATION RESULTS

Our design is implemented on the Stampede KNL cluster of
the Texas Advanced Computing Center (TACC) [11], which
consists of 508 Intel Xeon Phi 7250 KNL 68-core compute
nodes. Each KNL node runs a self-hosted CentOS 7 with a
KNL-compatible software stack, including Intel compiler and
Intel MKL, OpenMP and MPI libraries. The KNL nodes are
connected with 100 Gb/s Omni-Path network with a fat-tree
topology. We measure the timing characteristics using CPU
wall-clock time by running our design compiled with the -O3
compiler optimization setting.

Table II summarizes latency and throughput performance
for various antenna configurations indicated by U, S, C, and
B for 64-QAM modulation. We perform measurements on
processing a total of Ng.. = 1200 x 14 subcarriers as detection
workloads, corresponding to a 20 MHz LTE subframe which

contains 14 OFDM symbols with each symbol including 1200
subcarriers. For each antenna configuration, we show the data
rate performance for up to three CG iterations, which are
sufficient to achieve near-MMSE BER performance. We can
see that for a given S, there is little performance degradation
when we scale up the number B of BS antennas by increasing
the number C' of clusters. This observation demonstrates the
high scalability and modularity of our proposed decentralized
method for supporting hundreds or even thousands of BS
antennas. For example, our reference Phi implementation can
achieve over 110 Mb/s throughput for a very large 1024 x 16
massive MU-MIMO system at two CG iterations for a near-
MMSE BER performance. We finally emphasize that, with
possible lower message passing latency and higher computing
capability, our approach would achieve throughputs in the Gb/s
regime, e.g., by using FPGA or ASIC implementations.
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