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Abstract—We develop a novel sparse low-rank block (SLoB)
signal recovery framework that simultaneously exploits sparsity
and low-rankness to accurately identify peptides (fragments of
proteins) from biological samples observed using tandem mass
spectrometery (TMS). To efficiently perform SLoB-based peptide
identification, we propose two novel recovery algorithms: An
exact iterative method based on the alternating method of
multipliers (ADMM) and an approximate greedy algorithm that
extends orthogonal matching pursuit (OMP) to the SLoB frame-
work. For the exact ADMM algorithm, we provide analytical
conditions as to when the underlying convex optimization is
capable of detecting the peptides in a given sample. We finally
demonstrate that the SLoB framework and the proposed algo-
rithms substantially outperform existing sparse signal recovery
techniques for peptide detection with synthetic and real-world
TMS data.

I. INTRODUCTION

A. Peptide identification and proteomics

The identification of peptides (fragments of proteins) is key
for understanding which proteins are present in biological
samples. Since proteins control the processes of the human
body, their identification and understanding is a fundamental
area of research, including the fight against cancer [2], [3]
and Alzheimer’s disease [4]. The study of peptides is known
as proteomics and one standard approach for protein identifi-
cation is to split the proteins into its peptide fragments [5]–
[8] and then, to identify these peptides using tandem mass
spectrometery (TMS).

In this paper, we focus on a specific measurement process
developed in [9], [10], and we show how one can accu-
rately and efficiently identify the peptides in a biological
sample from a series of TMS measurements taken over
time. The proposed approach relies on finding sparse low-
rank blocks (SLoBs) in measured data that—together with
a known dictionary of the peptides—accurately model the
TMS measurement process. The generality of the proposed
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framework and the associated recovery methods find potential
use in related areas of compressive sensing [11], [12], sparse
signal recovery [13], and matrix completion [14]–[16].

B. Contributions

We present a novel peptide detection framework that relies
on sparse signal recovery and low-rank methods, as an al-
ternative to the block multiple-measurement vector (B-MMV)
problem [17]. To arrive at low complexity methods for peptide
identification, we propose two recovery algorithms: (i) A
convex optimization procedure, that relies on the alternating
direction method of multipliers (ADMM) [18], [19], and (ii) a
greedy algorithm, which is well-suited for peptide identifica-
tion in large datasets. For the convex optimization approach,
we develop a coherence-based recovery guarantee, which pro-
vides analytical conditions as to when the underlying convex
optimization problem is capable of detecting the peptides in
a given sample. Finally, we present numerical experiments
with both synthetic data and real world TMS measurements,
to demonstrate the efficacy of the proposed SLoB framework.

C. Notation

Lowercase and uppercase boldface letters stand for vectors
and matrices, respectively. For the matrix A, we denote its
transpose by AT . The jth column and the entry in the ith row
and jth column of a matrix A is designated by aj and [A]i,j ,
respectively. We write A⊗B and A � B for the Kronecker
and the Hadamard product (i.e., the entry-wise product) of A
and B, respectively. The Frobenius and nuclear norm of a
matrix are defined as ‖A‖F =

√∑
i,j [A]2i,j and as ‖A‖∗ =∑r

i=1 σi(A) with r = rank(A) and the singular values σi(A)
for i = 1, . . . , r of of M, respectively. The maximum and
minimum singular values of A are designated by σmax(A)
and σmin(A), respectively.

D. Outline of the paper

The remainder of the paper is organized as follows. Sec-
tion II introduces the signal and system model. Section III
summarizes the analytical recovery guarantee. Section IV de-
tails two peptide identification algorithms. Section V discusses
experimental results. We conclude in Section VI.



II. SYSTEM MODEL AND RECOVERY PROBLEM

To model the TMS measurement process of [9], [10],
we assume that the m/z (mass over charge) spectrum of a
precursor (or peptide fragment) can be represented as a vector
in Rm, where each entry of the vector corresponds to the
number of particles measured in a particular m/z interval.
Assume that we also have a list of n peptides (and their
fragments) that we are interested in detecting. Note that the
spectra of many peptides are known and can, for example,
be found in a database such as PeptideAtlas [20]. Let the ith

peptide have m/z spectrum d
(0)
i (where we use 0 to denote

that this is the parent peptide) and its fi − 1 fragments will
have spectra d

(j)
i , j = 1, . . . , fi − 1, where each vector d

(j)
i

is normalized to have unit `2 norm. Then, form the m × fi
dictionary Di =

[
d
(0)
i · · · d(fi−1)

i

]
, which characterizes the

spectrum of the ith peptide and all its fragments. Now, let Sj
be the set (with cardinality n) of all precursors that are present
at measurement instant j, so that the observation zj is given
by the following input-output relation:

zj =
∑
`∈Sj

D`xj [`] + nj =

n∑
i=1

Dixj [i] + nj , (1)

where xj [`] ∈ Rf` denotes how much of each fragment of the
ith peptide is present at measurement instant j, also referred to
as the intensity. The vector nj models additive measurement
noise occurring in the TMS measurement process. Since we
observe j = 1, . . . , T TMS spectra over multiple measurement
instants, we can rewrite (1) as

Z =

n∑
i=1

DiXi + N. (2)

Here, Z ∈ Rm×T , Xi ∈ Rfi×T and N ∈ Rm×T are matrices
containing as columns the vectors zj , xj [i], and nj as ap-
propriate. We are now interested in finding the solution to the
following problem: Given a collection of measurements Z and
the peptide dictionary blocks Di, recover the intensities Xi,
for i = 1, . . . , n, which correspond to the peptides that are
present in the TMS measurements.

A straightforward way to solve this problem is to deploy
a combination of a multiple-measurement vector (MMV)
problem with block sparsity. Specifically, instead of taking the
`2,1-norm of the (vector) blocks (occurring in both the (MMV)
and block-sparse recovery problem), we take the Frobenius
norm of the matrix blocks Xi. Concretely, one may solve the
following block MMV problem:

(B-MMV)

 minimize
X̂1,...,X̂n

∑n
i=1 ‖X̂i‖F

subject to ‖Z−
∑n
i=1DiX̂i‖F 6 ε.

Here, the parameter ε ≥ 0 needs to be chosen in accordance
to the Frobenius norm of the measurement noise.

We emphasize that the (B-MMV) problem makes no as-
sumption about the intensity values in any of the blocks Xi.
However, for real-world measurements, each of these blocks

will—at least ideally—be rank one, so that we can write
Xi = σiuiv

T
i where ui contains the ratio of the fragmented

ions and vi can be regarded as a vector describing the flow
rate of a precursor over time and all of its fragment ions. The
scalar σi then gives the intensity after ui and vi are normalized
to unit `2-norm. However, since a rank constraint would result
in a non-convex optimization problem, we relax this constraint
to the nuclear norm [14]–[16], to obtain the following convex
sparse low-rank block (SLoB) recovery problem:

(N-MMV)

 minimize
X̂1,...,X̂n

∑n
i=1 ‖X̂i‖∗

subject to ‖Z−
∑n
i=1DiX̂i‖F 6 ε.

This nuclear-norm MMV (N-MMV) recovery problem will
be our main focus in the remainder of the paper.

III. RECOVERY GUARANTEE

In order to gain insight into the recovery performance of
(B-MMV) and (N-MMV), we start by defining an appropriate
notion of coherence. By assuming that each block Di is nor-
malized to have σmin(Di) = 1, we obtain a SLoB coherence
parameter µD defined as

µD = max
k,` : k 6=`

sup
X 6=0

‖D∗kD`X‖∗
‖X‖∗

= max
k,` : k 6=`

σmax(D
∗
kD`). (3)

With this notion of coherence, we can deploy [1, Thm. 2.6]
to prove the following theorem stating when (B-MMV) and
(N-MMV) perfectly recover the blocks Di and the associated
intensities Xi from the noiseless observations Z.1

Theorem 1: Let Z =
∑n
i=1 DiXi and s ≤ n be the number

of non-zero blocks Xi, i = 1, . . . , n. If

s <
1

2

(
1 +

1

µD

)
, (4)

then the solutions of (B-MMV) and (N-MMV) using ε = 0
are unique and equal to the ground truth intensities Xi.

We emphasize that the results for synthetic and real-world
data shown in Section V demonstrate that (N-MMV) signif-
icantly outperforms (B-MMV) in most situations. However,
there is no dependence on the rank of the individual blocks in
the condition (4) of Theorem 1. The reason for this behavior
is the fact that both optimization problems suffer from the
same worst-case signals for which (4) is “just violated.”
Specifically, one can design particular instances of blocks Xi

that are either full-rank or rank one, which both (B-MMV)
and (N-MMV) cannot distinguish between (see [1, Sec. 4.3]
for the details). In order to obtain rank-dependent recovery
guarantees, one needs further assumptions on the signals;
the corresponding analysis of such assumptions and recovery
guarantees is part of ongoing work. Nevertheless, Theorem 1
provides insight into the m/z spectra of peptides (and their
fragments) that can be recovered via the SLoBs framework.
In particular, Theorem 1 states that the dictionary blocks Di

1Note that by following the approach of [21], [22], Theorem 1 can be
extended to the case of stable recovery of the blocks Di and the intensities
Xi with arbitrary (but bounded) noise, if condition (4) is satisfied.



must be sufficiently incoherent to enable perfect recovery from
the TMS measurements contained in Z. In other words, the
spectral signatures of the peptides to be detected must be
sufficiently distinct.

IV. RECOVERY ALGORITHMS

In this section, we detail two distinct methods for solving
(N-MMV). The first method is an iterative algorithm that ex-
actly solves the convex optimization problem (N-MMV); the
second method is a greedy algorithm that finds an approximate
solution in a computationally efficient manner.

A. Iterative algorithm (N-MMV-L)

The iterative algorithm detailed next relies on the alternating
direction method of multipliers (ADMM) [18], [19].

1) Reformulating the optimization problem: In order to
solve the (N-MMV) problem directly, we next describe an
efficient iterative method based on the alternating direction
method of multipliers (ADMM) [18], [19]. To do so, we
reformulate (N-MMV) by introducing the following auxil-
iary matrices: Ŵ = Z −

∑n
i=1 DiX̂i and Ŷi = X̂i, for

i = 1, . . . , n. The reformulated (and equivalent) optimization
problem is given by

(N-MMV?)



minimize
X̂i,Ŷi,∀i,Ŵ

∑n
i=1 ‖X̂i‖∗

subject to ‖Ŵ‖F 6 ε,

Ŵ = Z−
∑n
i=1 DiŶi,

X̂i = Ŷi, i = 1, . . . , n.

To arrive at an efficient way of solving (N-MMV?), we relax
the linear constraints to form its augmented Lagrangian

(N-MMV-L)



minimize
X̂i,Ŷi,∀i,Ŵ

∑n
i=1 ‖X̂i‖∗+

β1

2

∑n
i=1 ‖X̂i−Ŷi−Λi‖2F+

β2

2 ‖Ŵ−Z+
∑n
i=1 DiŶi−Ω‖2F

subject to ‖Ŵ‖F 6 ε.

This augmented Lagrangian problem can be viewed as an
instance of the Douglas-Rachford variable splitting method
commonly used in convex optimization [18], [19]. In
(N-MMV-L), the matrices Λi ∈ Rfi×T , i = 1, . . . , n, and
Ω ∈ Rm×T correspond to (scaled) Lagrange multipliers.

2) Solving (N-MMV-L) via ADMM: We now describe an
iterative method that finds the solution to (N-MMV-L) using
two nested loops. Rather than jointly optimizing for the X̂i,
Ŷi for i = 1, . . . , n and for Ŵ, we optimize each individ-
ually in the inner iterations, while keeping all others fixed.
This procedure has the advantage of separating (N-MMV-L)
into three main (inner) sub-problems each of which can be
solved efficiently. In the outer loop, we update the Lagrange
multipliers Λi and Ω in standard ADMM fashion.

The proposed ADMM procedure is given as follows. Let
the variables k = 1, 2, . . . and ` = 1, 2, . . . denote the inner
and outer iteration counters, respectively. For k = ` = 1

the algorithm is initialized with Ŷ
(1)
i = 0, ∀i, Ŵ(1) = 0,

Λi
(1) = 0, ∀i, and Ω(1) = 0. We then perform the following

three steps until one of the following stopping criteria is
reached: (i) the maximum number of Kin inner iterations is
achieved, or (ii) if the objective function of (N-MMV-L)
decreases by less than τin from one inner iteration to the next.

Step 1: Update the matrices Ŷi: For each matrix Ŷ
(k)
i ,

we fix the matrices X̂
(k)
i , for i = 1, . . . , n, Ŷ

(k)
j , for j 6= i,

and W. Then, by only considering the terms in the summand
of the objective function that depend on Ŷ

(k)
i , we obtain a

new estimate Ŷ
(k+1)
i by solving the following (unconstrained)

optimization problem:

Ŷ
(k+1)
i ← arg min

Ỹi

{
β1
2

∥∥∥X̂(k)
i − Ỹi −Λi

(`)
∥∥∥2
F
+

β2
2

∥∥∥Ŵ(k) − Z + Pi + DiỸi −Ω(`)
∥∥∥2
F

}
.

Here, Pi =
∑
` 6=i D`Ŷ

(k)
` and Ỹi is the minimization

variable. We emphasize that the squared Frobenius norm of
a matrix A can be rewritten as ‖A‖2F =

∑
` ‖a`‖

2
2 and

hence, by considering each column of Ỹi separately, one can
solve the above problem using T independent least-squares
(LS) problems. To achieve low computational complexity, we
solve these LS problems using off-the-shelf conjugate gradient
methods (CGLS) [23].

Step 2: Update the matrices X̂i: For each matrix X̂
(k)
i ,

i = 1, . . . , n, we only consider the terms in the summand
that involve X̂

(k)
i . Thus we obtain a new estimate X̂

(k+1)
i by

solving the following (unconstrained) optimization problem:

X̂
(k+1)
i ← arg min

X̃

{∥∥∥X̃∥∥∥
∗
+
β1
2

∥∥∥X̃− Ŷ
(k+1)
i −Λi

(`)
∥∥∥2
F

}
.

This optimization problem admits an efficient closed-form
solution via the singular value shrinkage operator [14], [24].
Specifically, set Qi = Ŷ

(k+1)
i +Λi

(`) and perform the singular
value decomposition Qi = USVT , where [S]`,` = σ` are the
singular values of Qi. With this decomposition, the updated
matrix X̂

(k+1)
i is given by [14], [24]

X̂
(k+1)
i ← Uη(S)VT

with the shrinkage operator [η(S)]k,` = 0, for k 6= ` and

[η(S)]`,` = max

{
σ` −

1

β1
, 0

}
,∀`.

Step 3: Update the matrix Ŵ: In this step, we only consider
the terms in the objective function that involve Ŵ to obtain a
new estimate Ŵ(k+1) given by the solution of the following
(constrained) optimization problem:

Ŵ(k+1) ← arg min
W̃,‖W̃‖

F
6ε

∥∥∥∥∥W̃ − Z +

n∑
i=1

DiŶ
(k+1)
i −Ω(`)

∥∥∥∥∥
2

F

.

This problem has a closed-form solution, which is obtained
by first calculating

E = Z−
n∑
i=1

DiŶ
(k+1)
i + Ω(`),



followed by projecting the resulting matrix E onto the
Frobenius ball of radius ε as follows

Ŵ(k+1) ←
{

E if ‖E‖F 6 ε

E/‖E‖F otherwise.

After the stopping criteria of the inner loop is met, we
proceed with the outer iteration where we update the La-
grange multipliers Λ`, ` = 1, . . . , n, and Ω in the standard
manner [18]:

Λi
(`+1) ← Λi

(`) − µ
(
X̂

(k+1)
i − Ŷ

(k+1)
i

)
,∀i

Ω(`+1) ← Ω(`) − µ
(
Ŵ(k+1) − Z +

∑n
i=1 DiŶ

(k+1)
i

)
.

Here, the parameter µ ≥ 0 is an appropriate step-size.
The algorithm detailed above continues to perform the inner
iterations, followed by updating the Lagrange multipliers until
either a maximum number of outer iterations Kout is reached
or if the objective function of (N-MMV-L) converges. The
convergence behavior of this ADMM method, as well as its
computational complexity, are affected by the parameters Kout,
Kin, β1, β2 and µ (see, e.g., [18] for additional details). In all
experiments shown in Section V, we set Kout = 100, Kin = 5,
β1 = 1, β2 = 1 and µ = (1+

√
5)/2, which delivers excellent

recovery performance at low computational complexity.

B. Greedy algorithm (N-OMP)

Orthogonal matching pursuit (OMP) [25], [26] was devel-
oped as an iterative greedy alternative to the classical basis
pursuit algorithm [27]. Analogously, we next propose a greedy
alternative that attempts to find an approximate solution to the
(N-MMV-L) problem.

1) Algorithm outline: The general form of such a greedy
algorithm performs the following steps until either a predeter-
mined number of iterations is reached, or the residual (given
by R(i) = Z−

∑
j DjX̂

(i)
j , where X̂

(i)
j is the current approx-

imation to Xj) is sufficiently small. To this end, assume that
prior to the ith iteration we have a solution {X̂(i)

1 , . . . , X̂
(i)
n }

with r(i)j = rank(X(i)
j ) and i =

∑n
j=1 r

(i)
j . Then, we perform

the following steps:
1) Identify the matrix X` in which we want to increment

the rank. Then, set r(i+1)
` = r

(i)
` + 1 and r

(i+1)
j = r

(i)
j

for all j 6= `.
2) Find the matrices {X̂(i+1)

1 , . . . , X̂
(i+1)
n } that solve the

following optimization problem: minimize
X̃1,...,X̃n

∥∥∥Z−∑n
j=1DjX̃j

∥∥∥
F

subject to rank(X̃j) 6 r
(i+1)
j ∀j.

(5)

3) Update the residual as R(i+1) = Z−
∑n
k=1 DkX̂

(i+1)
k .

The first two steps are non-trivial and contrary to first
appearances, the solution to (5) is not just given by a sin-
gular value decomposition. Hence, we propose the following
heuristic: Find the block D` of the dictionary that is most
correlated with the residual, i.e., find the block that maximizes∥∥D∗`R(i)

∥∥
F

. Note that this would be the block that would

most reduce the objective function of (5) without considering
the rank constraints. This approach resembles the Wiberg
algorithm [28] which is used to solve the problem

minimize
Û,V̂

‖W � (Y −UV)‖F , (6)

given W and Y, and where U and V are rank-r matrices.
The Wiberg algorithm is an alternating least squares (ALS)
approach relying on the observation that by alternately fixing
the matrices U and V, one can transform the problem into
separate LS minimization problems.

2) The Wiberg algorithm: To apply the Wiberg algorithm to
our problem, let UiΣiV

T
i be the singular value decomposition

of X̂i (which has rank ri) and set Ũi = UiΣi and Ṽi =
ViΣi to be the scaled version of the left and right singular
vectors of X̂i. Then,

∑n
i=1 DiXi =

∑n
i=1 DiUiΣiV

T
i , and

furthermore, for each i we have

vec(DiXi) = vec(DiUiΣiV
T
i )

(a)
=
(
IT ⊗DiŨi

)
vec(VT

i ),

where (a) follows since vec(AB) = (I⊗A) vec(B) (see [29,
Sec. 4.3] for the details). Consequently, by fixing each of the
matrices Ui and Σi, we can rewrite the problem as

minimize
V1,...,Vn

∥∥ vec(Z)− [IT ⊗(D1Ũ1) · · · IT ⊗(DnŨn)
]
×[

vec(V1)
T · · · vec(Vn)

T
]T ∥∥2

2
, (7)

which corresponds to a LS problem in the matrices Vi that
can be solved efficiently. Analogously, one can isolate the
terms Ui and solve the corresponding LS problem to update
the matrices Ui.

For large problem sizes, explicit calculation of the Kro-
necker product in (7) may require significant amounts of
memory. However, the use of CGLS [23] enables us to solve
the problem at low complexity. In particular, we directly
compute the matrix vector products (IT ⊗DiŨi) vec(V

T
i ) as

vec(DiXi) by exploiting the vectorization properties of the
Kronecker product [29, Sec. 4.3].

We note that for the case of a single pair of factors U
and V, the Wiberg algorithm has been shown to converge
to the desired solution, albeit slowly [30]. However, there
are currently no theoretical guarantees for convergence when
dealing with multiple Ui and Vj terms, as in the problem
at hand. Nevertheless, our own simulations have shown that
this Wiberg-based approach delivers excellent performance for
various datasets analyzed using our method.

V. RESULTS

We now apply the two proposed recovery algorithms to
synthetic and real measured TMS data, and we examine their
respective performance for a number of scenarios.

A. Synthetic results

We begin by presenting empirical phase transition plots in
Figure 1. Here we show the regions in which the algorithms are
able to recover at least 99% of the test signals. We generate
the ith rank-r (for r = 1, . . . , 10) block of size di × T by
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Figure 1. Empirical phase transition plots showing the region we can
recover at least 99% of the signals with Gaussian i.i.d. blocks. Each block
Xi has dimension 10 × 10. In the graph, “rank” refers to the rank of the
non-zero matrices Xi. Exploiting the low-rank structure via (N-OMP) and
(N-MMV-L) significantly outperforms the (B-MMV) based algorithms.

multiplying together two matrices A ∈ Rdi×r and B ∈ Rr×T
with i.i.d. zero-mean Gaussian entries with variance 1/r. We
set n = 64, fi = 10 (for all i) so that N = 640 and
we take T = 10. We then sweep M from 80 to 640, and
vary s from 4 to 64, which corresponds to the number of
non-zero matrices Xi. We refer to M/d as the number of
block-measurements. We also compare these results to solving
(B-MMV) or using (B-OMP), a greedy variant that finds an
approximate solution to (B-MMV). Both of these methods
ignore the low-rank structure in the matrices Xi and, hence.
they exhibit virtually no rank dependence.

Figure 1 demonstrates that when dealing with low-rank
blocks, the proposed nuclear-norm minimization approach is
able to recover a substantially larger number of blocks, espe-
cially when the rank of the blocks is close to one, compared
to solving (B-MMV) or using (B-OMP). Intuitively, this
behavior makes sense, since fewer parameters are required to
specify a rank-one matrix. In other words, fewer equations
are required to uniquely specify the solution. Consequently,
by exploiting the low-rank structure in the matrices Xi, we

Table I
NUMBER OF PEPTIDES IDENTIFIED VIA (B-OMP) AND (N-OMP)

Sample # peptides (B-OMP) (N-OMP)

L120224 342 140 (41%) 317 (93%)
L120225 342 156 (46%) 321 (94%)
L120227 342 140 (41%) 319 (93%)

can consistently recover a larger number of non-zero blocks.

B. Hybrid real/synthetic experiments

To further evaluate the performance of the proposed meth-
ods, we perform a mixture of real and synthetic experiments
that use a real peptide dictionary and an artificial set of ob-
servations Z, by randomly generating the matrices Xi (see [1,
Sec. 4.5.2] for additional details). We generated a dictionary
from the molecular description of the peptides, with an average
of 51 fragments per peptide (corresponding to the block-size).
We then quantized the dictionary and observations uniformly
from 200Th to 1000Th in steps of 0.025Th, where Th refers
to Thomsons, which is a common m/z measure unit. In total,
there are 32, 000 quantization bins.

Let us take a closer look at a matrix Xi returned by
(N-OMP) and (B-OMP) in Figure 2. The solution returned
by (N-OMP) is rank 1 and we see that the right singular
vector, which models to the flow rate, matches the ground
truth. However, the right singular vectors of the (B-OMP)
solution, which ignores the low-rank structure in the intensity
matrices Xi, bear no resemblance to the ground truth. The
reason for this discrepancy between the dominant singular
vector of the (B-OMP) solution and the original solution
stems from the fact that each Di, despite being a tall matrix,
is ill-conditioned. So although (B-OMP) is able to identify
the present peptides in the mixture, it cannot accurately de-
compose the sample into its constituents. However, (N-OMP)
imposes a low-rank structure into its solution, which enables
us to cope with ill-conditioned dictionaries and thus, returns
a solution that is much closer to the original signal.

C. Experiments with real-world proteomics data

We now evaluate the proposed SLoB framework and the
associated recovery methods on actual proteomics data and
analyze three different samples of peptides consisting of 342
known peptides. These samples have been acquired at the
Institute for Molecular Systems Biology at ETH Zürich [10]
and were measured using the TMS process described in [9]
over a period of approximately 2 hours. Our calculations were
performed across T = 1500 consecutive time-steps and use the
same peptide dictionary as in Section V-B.

The results are shown in Table I, where we give: (i)
the number of peptides in the sample, and (ii) the number
of peptides identified using (B-OMP) and (N-OMP). We
clearly see that by exploiting the low-rank structure of the
acquired TMS measurements via (N-OMP), one is capable of
successfully recovering a significantly higher percentage of the
peptides present in real-world measurements, i.e., (N-OMP)
substantially outperforms (B-OMP) for real-world proteomics
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Figure 2. Right singular vectors for one block. For the (B-OMP) solution, the dominant singular vector is shown in black and the red line is the singular
vector (corresponding to the 6th largest singular value) that most resembles the (N-OMP) solution. We see that the rank-aware (N-OMP) method accurately
recovers the time/intensity behavior of the true solution, which is in stark contrast to (B-OMP) that ignores the low-rank structure.

data. Note that the performance of (N-MMV-L) is not shown
here, as it delivers similar performance to (N-OMP).

VI. CONCLUSION

We have have developed a novel sparse low-rank block
(SLoB) framework and corresponding recovery algorithms that
are able to identify a large number of peptides in real-world
biological samples—significantly more than by using a naı̈ve
sparsity-based approach. Our experimental results show that
we can successfully distinguish overlapping peptides, even
with a small number of measurements. These preliminary
results suggest that we can analyze more complicated samples
and simultaneously reduce the physical measurement time,
which are two key advantages in the field of proteomics.

We emphasize that the proposed SLoB framework is also
applicable to hyper-spectral imaging. In particular, one can
decompose a particular material into its constituent parts,
i.e., the left singular vectors would describe the mixture
of materials and the right, the spatial locality. Investigating
the capabilities of the proposed SLoB framework for hyper-
spectral imaging is an interesting open research direction.
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