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Abstract—Lattice-reduction (LR)-aided successive interference
cancellation (SIC) is able to achieve close-to optimum error-rate
performance for data detection in multiple-input multiple-output
(MIMO) wireless communication systems. In this work, we
propose a hardware-efficient VLSI architecture of the Lenstra-
Lenstra-Lovász (LLL) LR algorithm for SIC-based data de-
tection. For this purpose, we introduce various algorithmic
modifications that enable an efficient hardware implementation.
Comparisons with existing FPGA implementations show that our
design outperforms state-of-the-art LR implementations in terms
of hardware-efficiency and throughput. We finally provide refer-
ence ASIC implementation results for 130 nm CMOS technology.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology enables
high spectral efficiency by using multiple antennas at both
sides of the wireless link and by transmitting multiple data
streams concurrently in the same frequency band. The task of
the MIMO detector is to separate the spatially multiplexed data
streams at the receiver. Maximum likelihood (ML) detection
provides optimum error-rate performance, but the associated
computational complexity is high, in general, and hardware
efficient VLSI implementation of ML detection is challeng-
ing [1]. To reduce the complexity associated with MIMO de-
tection, linear detection or successive interference cancellation
(SIC) can be employed. The complexity reduction associated
with such low-complexity detection schemes comes, however,
at the cost of a significantly degraded error-rate performance.

Lattice reduction (LR) techniques were proposed to re-
duce the performance gap between low-complexity MIMO
detection schemes and ML detection [2] and [3]. The basic
idea is to perform sub-optimum detection based on lattice-
reduced channel matrices. This approach shifts most of the
computational complexity to the preprocessing stage, which
needs to be performed only when the channel state changes.
Unfortunately, most communication standards require this
preprocessing step to be performed under tight latency con-
straints, which requires high-speed LR implementations. So
far, hardware-implementation aspects of LR have only been
addressed in [4] and [5] for MIMO detection and in [6] for
MIMO precoding.

Contributions: In this paper, we introduce a low-complexity
LR algorithm for SIC-based MIMO detection that is based on
the Lenstra-Lenstra-Lovász (LLL) algorithm [7] and employs
the Siegel criterion [8] and [9]. In an attempt to reduce

the computational complexity, we relax the size reduction
condition [10]. We further employ early termination (ET) of
the algorithm based on the actual execution time, in order
to guarantee a minimum throughput. To reduce the perfor-
mance loss in the presence of ET, we reverse the process-
ing order of the elements in the LR algorithm. Finally, we
describe a corresponding hardware-efficient VLSI architecture
which, compared to state-of-the-art FPGA implementations [4]
and [5], achieves at least a fivefold throughput increase with
only a slightly higher hardware complexity. We also provide
reference implementation results in 130 nm CMOS technology.

Notation: Matrices are set in boldface capital letters, vectors
in boldface lowercase letters. For an N × M matrix A, aj

denotes its jth column vector and Aj,i is the entry in the jth
row and ith column of this matrix. IN is the N ×N identity
matrix. The superscript H stands for the conjugate transpose.
The set of Gaussian integers is CZ. <{x} and ={x} extract
the real and imaginary part of x ∈ C and rounding to the next
Gaussian integer is denoted by d·c.

A. MIMO System Model

Consider a MIMO system with MT transmit and MR ≥MT

receive antennas. The MT -dimensional transmit vector
is x ∈ XMT and X ⊂ CZ corresponds to the underlying
scalar complex constellation chosen from a quadrature am-
plitude modulation (QAM) alphabet. The associated complex
baseband input-output relation is given by

r = Gx + n (1)

where G stands for the MR ×MT complex-valued channel
matrix, r is the MR-dimensional receive-vector, and n is
an MR-dimensional noise vector with i.i.d. circularly sym-
metric complex Gaussian distributed entries.

B. LR-Aided Low-Complexity MIMO Detection

The task of the MIMO detector is to recover x from r,
based on knowledge of the channel matrix G.

Relaxation and Lattice Reduction: In order to access
tools from lattice theory for MIMO detection, the condi-
tion x ∈ XMT on the symbol vector is initially relaxed
to x ∈ (CZ)MT . The purpose of relaxation to (CZ)MT is to be
able to interpret the received vector r as a point of a lattice Gx
that is translated away from the lattice by the noise vector n.
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Fig. 1. Uncoded bit error-rate (BER) for LR-aided SIC in an i.i.d. Rayleigh
fading MT = MR = 4 MIMO system with 16-QAM. Remapping to the
finite lattice X is done by quantization [11]. δ = 0.75 has been used for
the LLL algorithm, while for the Siegel LLL-variants (S-LLL and RS-LLL)
ε = 0.5. ML performance is shown as a reference.

The goal of LR is to find a suitable MT ×MT unimodular
matrix T, i.e., |det(T)| = 1 with Tm,n ∈ CZ ∀m,n, such
that B = GT generates a “more orthogonal” lattice than G.
The improved lattice then facilitates the search for the lattice
point that is closest to r. Conventional LR-aided algorithms for
MIMO detection are based on the LLL algorithm [7]. In this
paper, we consider the case where the algorithm is applied
to the sorted QR-decomposed channel matrix GP = QR;
P is a permutation matrix, QHQ = IMT

, and R is upper
triangular. From the LLL algorithm, the QR-decomposition of
the reduced lattice generator matrix B = Q̃R̃ can be readily
obtained.

Successive Interference Cancellation: LR-aided data detec-
tion is carried out on a modified version of the input-output
relation (1) r = Bz + n where z ∈ (CZ)MT , followed by
the computation of x̂ = Tẑ and by remapping x̂ to the
finite lattice XMT if Tẑ /∈ XMT . Throughout the paper
we consider LR-aided SIC, which was shown to outperform
linear detection in terms of error-rate performance [11]. LR-
aided SIC essentially solves Q̃Hr = R̃ẑ for ẑ through back-
substitution, where in each step, the intermediate result ẑi is
quantized to the nearest Gaussian integer before proceeding to
the next level.

II. REVERSED SIEGEL LLL ALGORITHM

The Lovász criterion used in the original LLL algorithm [7]
can be replaced with a variant proposed by Siegel [8]; this
criterion exhibits, in general, lower computational complexity
and entails virtually no loss in terms of error-rate performance,
which can be observed in Fig. 1. LLL LR based on Siegel’s
criterion is referred to as the Siegel LLL (S-LLL) algorithm
in the remainder of the paper and has initially been described
in [9]. In the following paragraphs, we describe novel methods
to further reduce the complexity of the S-LLL algorithm,
which enables low-complexity implementation.

A. S-LLL Without Size Reduction
The original S-LLL algorithm performs a so-called full size-

reduction step at the end of the algorithm [9], [5]. This step

Algorithm 1 Reverse Siegel LLL (RS-LLL) Algorithm

1: Init: Q̃← Q, R̃← R, T← IMT
, k ←MT , S ← 0

2: while (k ≥ 2) and (S < Smax) do
3: if εR̃2

k−1,k−1 ≥ R̃2
k,k then

4: S = S + 1
5: µ =

⌈
R̃k−1,k/R̃k−1,k−1

⌋
6: if µ 6= 0 then
7: r̃k ← r̃k − µr̃k−1

8: tk ← tk − µtk−1

9: end if
10: Exchange r̃k with r̃k−1 and tk with tk−1

11: Apply Givens rotation to R̃ and to Q̃, such that
R̃k,k−1 becomes zero

12: k ← min (k + 1,MT )
13: else
14: k ← k − 1
15: end if
16: end while

ensures that the size-reduction condition [7]

|R̃k,k| > 2 max{|<{R̃k,i}|, |={R̃k,i}|}, i = k + 1, . . . ,MT

is fulfilled. It can be shown that omitting the full size-
reduction does not affect the performance of SIC-based de-
tection schemes . Hence, by avoiding the size reduction pro-
cedure, the computational complexity of the S-LLL algorithm
can be reduced by about MT (MT − 1) /2 operations (mainly
corresponding to multiplications and additions).

B. Early Termination
In [12], it was shown that the worst-case (iteration) com-

plexity of the S-LLL is unbounded. Hence, it is of paramount
importance to include an ET mechanism into the LR algo-
rithm, in order to meet stringent latency requirements and
to guarantee a minimum throughput. Each iteration of the S-
LLL algorithm possibly alters the lattice basis R̃, Q̃, and T
(corresponding to a column swap), which involves a number
of costly computations. Since the number of column swaps is
approximately proportional to the time required for processing
a matrix on a given architecture (because the computational
overhead caused by iterations that do not affect the lattice
basis is negligible), our solution is to terminate the algorithm
after performing Smax column swaps. This ET scheme is in
contrast to previous work, where the algorithm is terminated
after a given number of iterations (see, e.g., [13]).

C. Reverse Siegel-LLL (RS-LLL)
It is well-known that the error-rate performance of SIC is

dominated by the weakest stream, i.e., the one corresponding
to the lower-most diagonal element R̃MT ,MT

[11]. The S-LLL
(as well as the LLL) algorithm starts by processing the top-
left element R̃1,1 and then progresses in an iterative fashion
toward the bottom-right of R̃. In the presence of tight run-
time constraints, it is, however, possible that the lower-most
element R̃MT ,MT

cannot be processed. We therefore propose
a reverse procedure—refered to as reverse S-LLL (RS-LLL)
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Fig. 2. Overview of the proposed RS-LLL architecture.

algorithm in the sequel—which begins at R̃MT ,MT
and pro-

ceeds iteratively in reverse direction toward R̃1,1. This strategy
substantially improves the error-rate performance compared
to the common “forward” procedure in the presence of ET
(e.g., given Smax = 4, the SNR loss at 10−3 BER is 1.2 dB
lower, see Fig. 1), as the performance-dominating streams are
processed first. In addition, it can be shown that a basis which
is reduced by the RS-LLL algorithm without ET, meets the
Siegel criterion as well, i.e., delivers the same LR “quality”
as the S-LLL algorithm.

The RS-LLL algorithm implemented in this paper (exclud-
ing size-reduction and including ET) is summarized in Alg. 1.
The parameter ε ∈ [0.25, 0.5] (line 3) influences the perfor-
mance and the complexity of the algorithm. Fruthermore, the
error-rate performance of all discussed LR algorithms can be
improved further by operating on a regularized version of the
channel matrix [11]. For the sake of simplicity of exposition,
however, regularization is not considered in the remainder of
the paper, since it would only affect the input of the LR
algorithms and is supported by the architecture presented next.

III. ARCHITECTURE

The high-level architecture proposed for the FPGA and
ASIC implementation of the RS-LLL algorithm is shown
in Fig. 2. The complex-valued data-path of the design con-
sists of three memories and two arithmetic units which are
comprised of an extended CORDIC circuit and of an array
of four complex-valued multipliers. Memories and arithmetic
units are connected through a dedicated routing network and
the operation of the data-path components is controlled by
a reactive finite state machine (FSM). The memories are
double-buffered to support concurrent data transfer to and
from the RS-LLL unit during operation and were realized
using flip-flop arrays instead of using memory macro-cells.
This implementation is necessary to enable the irregular and
parallel access that is required to fully utilize the arithmetic
units. To save area, the R-memory exploits the fact that R̃ is
upper triangular and its diagonal elements are real-valued.

In the following, we step through the RS-LLL algorithm
described in Alg. 1 and explain how the operations are mapped
to the data-path elements.

A. Computation of the Siegel Criterion
Each iteration starts by computing and checking the Siegel

criterion (line 3 of Alg. 1), which can be mapped to a single
complex-valued multiplication operation. Since a total of four
complex-valued multipliers is available, three independent
evaluations of the Siegel criterion can be performed in one
clock cycle. Hence, no time is spent for proceeding to another
diagonal element, if the criterion is not met for a particular k.

B. Size Reduction
When the Siegel criterion is met, two columns need to be

exchanged and a size reduction must be performed (lines 5-9
of Alg. 1). This size reduction starts with the computation of
the coefficient µ, which is obtained through an integer-rounded
division operation. In [14], a corresponding architecture based
on the Newton-Raphson method is presented. We found,
however, that the result of the division µ can be limited to
a small dynamic range, as the entries of T also need to
be limited to enable an efficient fixed-point implementation.
As a consequence of limiting the dynamic range of T such
that the error-rate performance loss remains negligible, the
coefficient µ can also be constrained to low precision. To take
advantage of this observation, the division (line 5 of Alg. 1) is
computed with a non-restoring divider [15] which can easily
be built into the extended CORDIC circuit that is already
present in the data-path. The rounding operation is realized
with a simple look-up table, which saves the more complex
classical rounding operation.

The computation of µ is followed by the update of r̃k and
of tk. For R̃k−1,k, the update is obtained from the CORDIC
as a side-product of the preceding division operation. For the
remaining elements of r̃k, the update is carried out on the
complex-valued multipliers. For the updates of tk, it is not
efficient to utilize the complex-valued multipliers, because of
the small widths of the involved operands. Hence, a dedicated
low-precision multiply-and-accumulate logic was introduced
directly in the T -memory.

C. Givens Rotations
After the size reduction and the column exchange, the

upper-triangular structure of R̃ must be restored (line 11
of Alg. 1). Application of a complex-valued Givens rotation
null the matrix element R̃k,k−1 and update the corresponding
elements of R̃ and Q̃, such that GT = Q̃R̃. We employ a
master-slave CORDIC architecture as proposed in [16], [17]
to perform these tasks. A complex-valued (master) CORDIC
in vectoring mode performs the nulling, while a second (slave)
CORDIC concurrently computes the corresponding phasor.
With these phasors, the updates of the remaining entries of R̃
and Q̃ can then be performed more efficiently on the complex-
valued multipliers. The number of such multiplier units that
yield optimum resource utilization and area efficiency is
determined by the ratio of vectoring to rotation operations and
by the number of required micro-rotations [17]. Accordingly,
for the complex-valued RS-LLL algorithm supporting MT =
MR = 4, four complex-valued multipliers and a master-slave
CORDIC (that computes three micro-rotations per clock cycle
and performs nine micro-rotations in total) were selected.



TABLE I
FPGA IMPLEMENTATION RESULTS AND COMPARISON

[5] This work [4]
LR algorithm S-LLL RS-LLL LLL
FPGA type Virtex-II Pro Virtex-IV
Speed grade n.a. -5 -12 n.a.
Max. clock frequency [MHz] 100 45 79 140
Slices 7 349 4 379 4 805 3 617
Slice FFs 9 051 1 503 1 492 n.a.
Slice LUTs 10 254 8 171 8 206 n.a.
Block RAMs 69 0 0 n.a.
Multipliers 24 16 18 10
Avg. cycles per matrix 420 14 130
Avg. throughput [MMat/s] 0.2 3.2 5.6 1.1

IV. IMPLEMENTATION RESULTS

The RS-LLL architecture described above was implemented
for a MT = MR = 4 MIMO system on a Virtex-II Pro
VP70 FPGA, a Virtex-IV VLX160 FPGA, and in 130 nm
CMOS technology. In the following we compare our design
to existing FPGA implementations and present reference VLSI
implementation results.

A. FPGA Implementation and Comparison

Implementation results for the suggested RS-LLL algorithm
are summarized in Tbl. I together with previously reported
designs [4], [5]. To enable a fair comparison, figures are
reported with single-buffered memories and a high runtime
limit (i.e., Smax = 20).

The design reported in [5] implements the S-LLL algorithm
and achieves significantly lower throughput (at comparable cir-
cuit complexity) than our implementation. The FPGA design
in [4] implements the complex-valued LLL algorithm. Our
RS-LLL implementation achieves a fivefold improvement in
terms of throughput at the cost of only slightly more FPGA
resources. We therefore conclude that the presented RS-LLL
implementation outperforms state-of-the-art LR FPGA imple-
mentations in terms of hardware-efficiency and throughput.

B. ASIC Implementation

The RS-LLL architecture has been implemented on a
130 nm CMOS process. Corresponding implementation results
are given in Tbl. II. Our implementation delivers 23.8 M
matrices per second while requiring 107 kGE. Since no ASIC
implementation has been described so far in the open literature,
we are unable to perform comparison with existing designs.

V. CONCLUSION

We studied the S-LLL algorithm for LR-aided SIC in
MIMO systems, regarding the suitability for VLSI imple-
mentation. To this end, the algorithm’s complexity has been
reduced and a hardware-efficient architecture has been de-
scribed. Corresponding implementation results on FPGAs
demonstrate that reference architectures proposed in [4], [5]
are outperformed in terms of throughput by at least a factor
of five, while requiring only slightly more FPGA resources.
Reference VLSI implementation results in 130 nm CMOS
technology are shown and we conclude that SIC-based MIMO
detection aided by the RS-LLL algorithm proposed in this

TABLE II
IMPLEMENTATION RESULTS IN 130 NM (1P/8M) CMOS TECHNOLOGY

This work
Max. clock frequency 333 MHz
Cell areaa 107 kGE
Core area 0.925 mm2

Avg. cycles per matrix 14
Avg. throughput 23.8 MMat/s

aOne gate equivalent (GE) corresponds to a two-input drive-2 NAND gate.

paper seems to be a promising technique for sub-optimal and
low-complexity MIMO detection.
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