Gram-Schmidt-based QR Decomposition for MIMO
Detection: VLSI Implementation and Comparison

P. Luethif, C. Studer®, S. Duetsch!, E. Zgraggen?, H. Kaeslinf, N. Felber!, and W. Fichtner'
Integrated Systems Laboratory, ETH Zurich, 8092 Zurich, Switzerland
T{luethi, studer, kaeslin, felber, fw} @iis.ee.ethz.ch, i{seduetsc, eugenz} @ee.ethz.ch

Abstract—The QR decomposition (QRD) is an important
prerequisite for many different detection algorithms in multiple-
input multiple-output (MIMO) wireless communication systems.
This paper presents an optimized fixed-point VLSI implementa-
tion of the modified Gram-Schmidt (MGS) QRD algorithm that
incorporates regularization and additional sorting of the MIMO
channel matrix. Integrated in 0.18um CMOS technology, the
proposed VLSI architecture processes up to 1.56 million complex-
valued 4x4-dimensional matrices per second.

The implementation results of this work are extensively com-
pared to the Givens rotation (GR)-based QRD implementation
of Luethi et al.,, ISCAS 2007. In order to ensure a fair com-
parison, both QRD circuits have been integrated in the same
IC manufacturing technology, with equal functionality, and the
same numeric precision. The comparison of the implementation
results clearly showed superiority of the GR-based VLSI solution
in terms of area, processing cycles, and throughput.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology is con-
sidered as one of the key elements for enabling high-
throughput wireless communication. MIMO systems employ
multiple antennas at both ends of the wireless link and can
increase data rate by transmitting multiple data streams con-
currently and in the same frequency band [1]. Consequently,
many upcoming wireless communications standards, for ex-
ample, IEEE 802.11n, IEEE 802.16e, and 3GPP LTE take ad-
vantage of MIMO technology. Unfortunately, the considerable
throughput improvements entail a significant increase in signal
processing complexity, especially on the receiver side.

The QR decomposition (QRD) is one of the key instru-
ments for MIMO receivers, since numerous MIMO detection
algorithms require the QRD of the channel matrix as starting
point. The application of QRD ranges from linear detection
to successive interference cancellation (SIC), and it also
forms the basis of tree-search-based algorithms, such as the
maximum-likelihood performance-achieving sphere decoder,
e.g., [2]. Sorting of the channel matrix can be efficiently
incorporated into the QR decomposition [3], termed as sorted
QR decomposition (SQRD), leading to a significant error
rate reduction in combination with SIC. Further reduction in
terms of error rate performance for SIC can be achieved by
performing the SQRD on a regularized channel matrix [4].
For tree-search-based detection algorithms, regularized SQRD
significantly lowers the tree-search complexity at the cost of
a negligible loss in error rate performance [2]. Note that
regularized SQRD only entails a 50% higher computational
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effort compared to non-regularized SQRD [5] and therefore
constitutes a promising candidate for SIC and tree-search-
based MIMO receivers.

Contribution: In this work, we present a VLSI imple-
mentation of a matrix preprocessor performing regularized
MGS-SQRD of 4x4-dimensional complex-valued matrices.
The use of algorithmic optimizations enables to achieve close-
to floating-point error-rate performance for the resulting VLSI
architecture. Finally, we provide a fair comparison between
this work and a Givens rotation (GR)-based reference imple-
mentation [5] — both integrated in 0.18 yum CMOS technol-
ogy — and identify their corresponding pros and cons.

Outline: In the following, the system model and a brief
overview of QRD-based MIMO detection are presented.
Sec. II introduces the regularized SQRD that bases on a
hardware-optimized version of the modified Gram-Schmidt
QRD [6]. The corresponding VLSI architecture is presented in
Sec. III. Finally, Sec. IV provides a comparison between this
work and the GR-based reference SQRD implementation [5].

Notation: Bold uppercase and lowercase letters represent
matrices and column vectors, respectively. The ¢th column
vector of matrix A is denoted by a;, while A;; stands for
the element in row ¢ and column k of A. JA; ; represents
the real part of A; ) and A, the imaginary part of A; .
The superscript 7 denotes the transpose and ¥ the Hermitian
transpose. The expectation operator is E[].

A. MIMO System Model

We consider a MIMO system with My transmit and Mg
receive antennas. The My x Mp-dimensional matrix H rep-
resents the MIMO channel, the Mp-dimensional transmit
signal vector is denoted by s = [s1, s2,...,51,]7, and the
Mp-dimensional vector n represents the additive zero-mean
i.i.d. complex Gaussian noise with variance o2 per complex
dimension. The energy of the transmitted symbol vector is
normalized such that E [ssH ] = Iz, where I, is the My X
Mr-dimensional identity matrix. The M r-dimensional receive
vector y = [y1, Y2, .-, Ymz). corresponds to y = Hs + n.
The signal-to-noise ratio (SNR) per receive antenna is M /o?2.

B. MIMO Detection Based on Regularized SORD

Sorting and Regularization: QRD for MIMO detection
starts by decomposing H into a unitary matrix Q and an
upper-triangular matrix R with real-valued non-negative el-
ements on the main diagonal. In order to improve the de-
tection performance, the SQRD algorithm efficiently com-
putes H = QRP7 such that the sorting R; ; < R; ; fori < j



is approximated. The Mz x Mp-dimensional permutation
matrix P7 accounts for the sorting induced by the SQRD
algorithm. The basic idea underlying regularized SQRD [4] is
to reduce the probability of ill-conditioned channel matrices
by computing the SQRD of the matrix
] H Qa
H_[JnIMT :|_|:Qb
= T = . . .
where Q = [QT QT] and R is upper-triangular with real-
valued elements on the main diagonal. The dimensions of
matrices Qg, Qp, R are Mg x My, My x My, and My x My,
respectively. Note that choosing the regularization parameter
according to o, is termed as MMSE-SQRD [4].

MIMO Detection: In order to efficiently perform MIMO de-
tection, the input-output relation of the MIMO channel can be
transformed into y = RPT's + i1, where ¥ = QXy and where
1 contains noise Q' n and additional (self-)interference. This
modified I/O relation can be solved with reduced computa-
tional complexity, e.g., through SIC [4] or sphere decoding [2].

] RPT (D)

II. GRAM-SCHMIDT-BASED REGULARIZED SQRD FOR
FIXED-POINT IMPLEMENTATION

The MMSE-SQRD of H can be performed through Gram-
Schmidt orthogonalization [6] or through a sequence of unitary
transformations, e.g., by using Givens rotations or House-
holder reflections. Algorithm 1 essentially corresponds to the
original SQRD algorithm in [3], but has been refined as
described in the following three subsections.

A. Modified Gram-Schmidt Algorithm

The classical version of the GS algorithm has proven
to be numerically less stable than the MGS algorithm [7].
The regularized MGS-QRD algorithm performs a succes-
sive orthogonalization of the columns h; starting from the
regularized channel matrix H. To this end, the algorithm
initializes Q = H and iteratively computes the QRD in
My steps @ = 1,2,..., My. The final matrices Q and R
at step ¢ = Mr correspond to the ones given in (1). For each
step ¢, the element on the main diagonal of R is computed as
R = /@l q;. Then, each element k =i+ 1, z—|—2 , Mp
on the ith row of Rz , is computed as Rz E= qZ qx and the
associated column qy is updated accordlng to

!?U

qr < q 5 61 2

:U

B. Iterative Sorting Strategy

The iterative sorting strategy employed in this paper cor-
responds to the one proposed in [3]. For each step ¢ — prior
to the computation of the elements of R and the columns in
Q - the column q; (I = 4,i + 1,..., My) with the smallest
squared /2-norm is determined and processed first. To this
end, the ith column of R (and of Q, respectively) needs
to be exchanged with the one associated with the smallest
squared ¢2-norm. In order to avoid expensive norm recalcula-
tion in each step, an economic norm-updating strategy is used.
The squared ¢2-norm associated with the columns of Q are
initialized at the beginning of the MGS-SQRD algorithm as
& =1[&,8,...,6u,)T, and then iteratively updated, as shown
in Alg. 1 on lines 2 and 18, respectively.

Algorithm 1 MGS-SQRD with column exponents
1: Q “— I:I, R «— ONITXJWT; P — IJWT

_ _ _ T
2 & — [llau? I\qQIIQ,...JIqMTI\Q] ;e — Onmypxa
3: fort=1,2,. T do

4: j < arg mml dit1,..., Mp &

5:  exchange columns i and j in Q, R, and P
6: exchange elements ¢ and j in £ and e

T o 2[ logz El'\

8: & -

9: d — 1/u

10: RZI —u- 2a/2

11: C_lz — d . C_lz

12: B — [log2 (maxlzl,gw
13 q—q-27"

14: e —e +0—a/2

Mpt+Mp [max[[RQ1i|, [SQuil]])]

15 fork=i+1,i4+2,...,Mr do

16: v—q; -ar

17: Riyk — p-2%Tek

18: & — & — v 2 92(eiter)

19: qk - qk . 2—2 max[e;,0] _ v - (—11 . 22 minle;,0]
20: er < ex + 2max [e;, 0]

21:  end for

22: end for

23: QH[q1"2613q2'2827"'7q1\4T‘QEN[T}

C. Column-Wise Reduced Precision Floating-Point Technique

An important characteristic of the MGS algorithm is that
most of the operations are performed on entire columns of
the matrix Q. While the dynamic range of elements within
one column remains relatively small, it can be large among
different columns q;, due to the division operation in (2)
(cf. lines 9 and 11 of Alg. 1). As a consequence, we employ a
column-wise floating-point technique similar to that proposed
in [8] in order to reduce numeric precision issues. To this
end, each column q; is associated with an individual exponent
e; € Z such that q; = q; - 2. Note that the transformation
from q; to q; and vice versa can be computed efficiently in
hardware by using arithmetic shift operations only.

ITIT. VLSI ARCHITECTURE FOR MGS-SQRD

The target application for the proposed VLSI implementa-
tion is channel preprocessing in MIMO-OFDM communica-
tion systems, where a large number of complex-valued channel
matrices have to be processed in a short time [9]. The VLSI
architecture for the sorted QR decomposition employs the
MGS algorithm described in Alg. 1. The top-level diagram of
the SQRD architecture is shown in Fig. 1. The main blocks
of the architecture are a square root (SQRT), an inverse (INV)
and a subtraction (SUB) unit, a complex-valued multiply-and-
accumulate (C-MAC) block, and various memories.

A. Throughput Optimizations

For high-throughput VLSI architectures, an important de-
sign aspect is the limitation in memory bandwidth. Many
algorithms imply data dependencies, which are challenging
to realize efficiently in VLSI architectures. Choosing an ade-
quate memory organization combined with a dedicated access
scheme allows to greatly reduce the number of individual
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Fig. 1. VLSI architecture of the MGS-SQRD showing the main building

blocks of the datapath. The dark shaded components represent normalization
units for the column exponents of the matrices. [C C] stands for two complex-
valued signals, R denotes a real-valued signal.

memory accesses, thus keeping the required memory band-
width of the VLSI architecture non-critical. For the MGS-
SQRD architecture, this aspect has been addressed by storing
two matrix elements with both real and imaginary parts
together at one memory location. Although this access scheme
proved to work well in general for this VLSI architecture, there
remained particular memory access issues in the design. For
instance, a memory access conflict emerged in calculations
involving two different columns of the matrix Q (cf. line 16
of Alg. 1). This conflict was solved by introducing local cache
registers for q;, as shown in Fig. 1.

The exploration of the VLSI design space for the SQRT and
INV blocks showed that moderately iteratively decomposed
architectures result in the best trade-off between silicon area
and processing time, without incurring detrimental effects on
the circuit’s overall throughput. As a consequence, the SQRT
and INV blocks were designed to use three and six clock
cycles for one computation, respectively.

The MGS-SQRD algorithm exhibits a computationally in-
tensive section on line 16 of Alg. 1. This complex-valued
scalar product has been realized by using dedicated C-MAC
units. The application of two parallel C-MAC units emerged
to be the most viable solution for addressing the critical design
aspects, i.e., limitations in memory bandwidth, delivery of high
throughput and economic use of hardware resources. The strict
data dependencies in lines 7-10 of Alg. 1 offer only little
opportunities for additional parallelization: The sequence of
square root, inverse, and multiplication is difficult to compute
efficiently in parallel. Nevertheless, any negative effects on the
overall throughput have been minimized by already starting
the computation of both sort order and square root, while the
inner loop involving the C-MAC at lines 15-21 of Alg. 1 is
still being executed.

B. Numeric Precision

The inverse on line 9 of Alg. 1 is the key issue for adapting
the MGS-SQRD algorithm to the fixed-point design space.
Since inverse and division operations significantly increase the
dynamic range of the result, special care needs to be taken
in case of fixed-point representations. Our SQRD architecture
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Fig. 2.  BER performance of different fixed-point SQRD algorithms. The

corresponding simulation employs uncoded 4x4 MIMO, 16-QAM modula-
tion, and a detection stage performing SIC. Except for the fixed-point SQRD
model, all remaining components are realized using floating-point arithmetic.
We assume perfect channel state information at the receiver. [x y] denotes
total number of bits including the sign bit, and fractional bits, respectively.

TABLE I
WORD LENGTH AND SILICON AREA OF DIFFERENT UNITS

[ Unit [[ Word Length? [bit] [ Area [mm?] | Area [%] ]
Memory 20 0.247 25
SQRT 36 0.036 4
INV 33 0.029 3
Dual C-MAC 20 0.347 35
Normalization 20 0.089 9
Cache 20 0.085 8
Iterative Sorting 20 0.023 2
Others - 0.141 14

“Indicates the number of bits per complex dimension.

employs column exponents introduced in Sec. II-C, which
are realized as dedicated normalization units, indicated with
dark shaded blocks in Fig. 1. A normalization unit checks for
the largest absolute value amongst all elements of a matrix
column, and then performs the corresponding arithmetic shift
(of 415 bit positions) in order to best maintain the overall
numeric precision.

The result of this effort can be seen in the bit error rate
(BER) performance plot depicted in Fig. 2. The introduction
of column exponents clearly shows the significant BER perfor-
mance improvement of approximately two orders of magnitude
at 40dB SNR.

C. Implementation Results

The proposed VLSI architecture of Fig. 1 has been inte-
grated in UMC 0.18 um 1P/6M CMOS technology, requiring
a core area of 0.997mm?. It achieves a maximum clock
frequency of 162 MHz and a throughput of up to 1.56 million
SQRD/s. A summary of applied internal word lengths for
various blocks and the corresponding synthesis area is given
in Tbl. I, the final layout of the circuit is shown in Fig. 3.

IV. COMPARISON

A fair comparison of two different VLSI circuits implies
the same functionality, numeric precision, and manufacturing
technology for both devices. To compare the numeric precision
of MGS-SQRD and GR-SQRD, the same simulation setup has



TABLE II
POST SYNTHESIS RESULTS FOR BOTH VLSI IMPLEMENTATIONS

[ [[ This work [ Luethi et. al. [5] ]
Algorithm MGS-SQRD GR-SQRD
Memory word length [bit] 20 13
Core area® [mm?] / [kGE] 0.997 /61.8 0.785 / 48.7
Max. fox [MHz] 162 166
TSQRD [ns] 641 480
Throughput [M SQRD/s] 1.56 2.08
SQRD processing cycles 104 80
AT -product? [ns mm?] 639 377

“One gate equivalent (GE) corresponds to a two-input drive-2 NAND gate.
bCorresponds to the product of the core area and TsQRD-

been used. Moreover, we focus on 4 x4-dimensional complex-
valued matrix decompositions employing regularized SQRD.
The parameters of both architectures have been adjusted to
provide close-to floating-point BER performance up to a SNR
of 40dB, as shown in Fig. 2. Finally, the GR-SQRD-based
reference implementation [5] using a 0.25 um CMOS process
has been re-integrated in 0.18 um technology.

A. Comparison of Algorithm and Architecture

The GR-SQRD algorithm allows an implementation by the
use of unitary transformations only. The main advantage of this
algorithm lies in the fact that the GR can efficiently be realized
in hardware by CORDIC arithmetic [5], which preserves the
total power of the operands. Algorithms with this property are
well suited for fixed-point VLSI implementations because the
dynamic range of the variables is strictly confined. In contrast,
the MGS algorithm consists of non-unitary transformations
employing division and square root operations. This leads to
an increased dynamic range and renders fixed-point implemen-
tation difficult. To compensate for this, column exponents and
larger word lengths are necessary (cf. Tbl. II) to maintain a
comparable numeric precision (cf. Fig. 2).

The MGS-SQRD architecture contains many different com-
putational units, some of them having low processing activi-
ties, e.g., the inverse and the square root units are used only
four times during a 4x4-dimensional regularized SQRD. The
required algorithmic modifications for the reduced floating-
point approach further exacerbate this problem as many nor-
malization units with low overall activity are introduced.
On the other hand, the GR-SQRD reference architecture [5]
holds a higher and more uniform utilization of the internal
processing blocks. The reason for this is better regularity in
data flow, offering the potential for better hardware-efficiency.

B. Comparison of VLSI Implementations

The results in Tbl. II demonstrate the benefits of a VLSI
implementation for regularized SQRD based on Givens ro-
tation rather than Gram-Schmidt. This is a consequence of
algorithmic and architectural differences.

Other QRD implementations have been described in the
literature, e.g., [8], [10]. Unfortunately, those implementations
do not perform SQRD. Furthermore, the architecture described
in [8] is designed for FPGA implementation, while the ASIC
design in [10] performs the QRD of real-valued matrices.
Thus, a fair comparison with our VLSI implementations of
MGS-SQRD and GR-SQRD is currently not possible.

Fig. 3. Chip micrographs of the Gram-Schmidt-based (left) and the Givens
rotation-based (right) VLSI implementation of sorted QR decomposition. Both
designs were integrated in UMC 0.18 pm 1P/6M CMOS technology. Adjacent
core logic is not related to the presented designs.

V. CONCLUSIONS

Compared to the MGS-SQRD algorithm proposed in this
paper, the GR-SQRD described in [5] exhibits a number of
significant economic benefits for a VLSI implementation: The
GR-SQRD algorithm has a smaller numeric range of operands
throughout and is well-suited for fixed-point CORDIC arith-
metics. With respect to an efficient VLSI realization, the GR-
SQRD has a more regular data flow employing fewer com-
putational units of distinct nature. This fact leads essentially
to a higher and more uniform utilization of all components.
Moreover, the GR-SQRD-based VLSI implementation delivers
a higher throughput combined with a smaller circuit size and
hence, offers a superior hardware-efficiency.

While unfavorable for the modified Gram-Schmidt method,
this is an important insight gained through our work as the
modified Gram-Schmidt approach currently is more widely
adopted for VLSI implementations in practice. We believe
this is because, firstly, Gram-Schmidt prevails in software pro-
grams that use floating-point arithmetics and secondly, Givens
rotations require a more sophisticated degree of understanding
in VLSI design if CORDIC arithmetics are employed.
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